arXiv:1903.12307v1 [cs.NI] 29 Mar 2019

Expanding across time to deliver bandwidth efficiency and low latency

William M. Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C. Snoeren, and George Porter
University of California San Diego [Technical Report - March 28, 2019]
https://circuit-switching.sysnet.ucsd.edu/

Abstract

Datacenters need networks that support both low-latency
and high-bandwidth packet delivery to meet the stringent
requirements of modern applications. We present Opera,
a dynamic network that delivers latency-sensitive traffic
quickly by relying on multi-hop forwarding in the same
way as expander-graph-based approaches, but provides near-
optimal bandwidth for bulk flows through direct forwarding
over time-varying source-to-destination circuits. The key to
Opera’s design is the rapid and deterministic reconfiguration
of the network, piece-by-piece, such that at any moment in
time the network implements an expander graph, yet, inte-
grated across time, the network provides bandwidth-efficient
single-hop paths between all racks. We show that Opera sup-
ports low-latency traffic with flow completion times compa-
rable to cost-equivalent static topologies, while delivering up
to 4x the bandwidth for all-to-all traffic and supporting 60%
higher load for published datacenter workloads.

1 Introduction

Datacenter networks are tasked with providing connectiv-
ity between an ever-increasing number of end hosts whose
link rates improve by orders of magnitude every few years.
Preserving the “big-switch” illusion of full bisection band-
width [2, 21]] by augmenting the internal switching capacity
of the network accordingly is increasingly cost prohibitive
and likely soon infeasible [35]. Practitioners have long fa-
vored over-subscribed networks that provide all-to-all con-
nectivity, but at only a fraction of host-link speeds [21} i41]].
Such networks realize cost savings by dramatically reducing
the amount of in-network capacity (in terms of both the num-
ber and rate of links and switches internal to the network fab-
ric), providing full-speed connectivity between only a subset
of hosts, and more limited capacity between others.

The catch, of course, is that any under-provisioned topol-
ogy inherently biases the network toward certain workloads.
Traditional over-subscribed Clos topologies only support
rack-local traffic at full line rate; researchers have proposed
alternate ways of deploying a limited amount of switching
capacity—either through disparate link and switch technolo-
gies [31, 138} 140, 44, non-hierarchical topologies [27} 29, 42|
43|, or both [20} 34]—that can deliver higher performance
for published workloads [4} [39] at similar costs. Because
workloads can be dynamic, many of these proposals imple-
ment reconfigurable networks that allocate link capacity in
a time-varying fashion, either on a fixed schedule [34, 140]]

or in response to recent demand [20, 31 |44]]. Unfortunately,
practical reconfigurable technologies require non-trivial de-
lay to retarget capacity, limiting their utility for workloads
with stringent latency requirements.

Under-provisioned networks often incorporate some fla-
vor of indirect traffic routing to address inopportune traffic
demands; because application workloads do not always align
well with the structure of the network, some traffic may tran-
sit longer, less-efficient paths. The benefits of indirection
come at significant cost, however: traversing more than a
single hop through the network imposes a “bandwidth tax.”
Said another way, x bytes sent over a direct link between two
end points consume only x bytes of network capacity. If that
same traffic is instead sent over k links, perhaps indirecting
through multiple switches, it consumes (k - x) bytes of net-
work capacity, where (k — 1)x corresponds to the bandwidth
tax. Hence, the effective carrying capacity of a network,
i.e., net the bandwidth tax, can be significantly less than its
raw switching capacity; aggregate tax rates of 200—500% are
common in existing proposals.

Reconfigurable networks seek to reduce the overall band-
width tax rate of a given workload by provisioning direct
links between end points with the highest demands, elim-
inating the tax on the largest, “bulk” flows whose com-
pletion time is gated by available network capacity, rather
than propagation delay. The time required to identify such
flows [311144] and reconfigure the network [20}134], however,
is generally orders-of-magnitude larger than the one-way de-
lay of even an indirect route through the network, which is
the main driver of optimal completion times for small flows.
Hence, dynamic networks face a fundamental trade-off be-
tween amortizing the overhead of reconfiguration against the
inefficiency of sub-optimal configurations. The upshot is ex-
isting proposals are either unsuitable for latency sensitive
traffic (which is frequently shunted to an entirely separate
network in so-called hybrid architectures [31} 34, 38]), or
pay substantial bandwidth tax to provide low-latency con-
nectivity, especially when faced with highly dynamic or un-
predictable workloads.

Opera is a network architecture that minimizes the band-
width tax paid by bulk traffic—which makes up the vast
majority of the bytes in today’s networks [4, [39]—while
ensuring low-latency delivery for the (small fraction of)
traffic that cannot tolerate added delays. Opera imple-
ments a dynamic, circuit-switched topology that constantly
reconfigures a small number of each top-of-rack (ToR)

switch’s uplinks, moving through a series of time-varying
expander graphs (without requiring runtime circuit selec-
tion algorithms or network-wide traffic demand collection).
Opera’s ever-changing topology ensures that every pair of
end points is periodically allocated a direct link, delivering
bandwidth-efficient connectivity for bulk traffic, while indi-
recting latency-sensitive traffic over the same, low-diameter
network to provide near-optimal flow completion times.

By strategically pre-configuring the assignment of rack-
to-rack circuits at each instant in time such that those cir-
cuits form an expander graph, Opera can always forward
low-latency traffic over an expander without waiting for any
circuits to be (re-)configured. Thus, on a per-packet basis,
Opera can choose to either (1) immediately send a packet
over whatever static expander is currently instantiated, in-
curring a modest tax on this small fraction of traffic, or (2)
buffer the packet and wait until a direct link is established
to the ultimate destination, eliminating the bandwidth tax
on the vast majority of bytes. Our simulation results show
this trade-off results in up to a 4 X increase in throughput for
shuffle workloads compared to cost-equivalent static topolo-
gies. Moreover, for published, skewed datacenter workloads,
Opera delivers an effective 8.4% bandwidth tax rate, result-
ing in up to a 60% increase in throughput while maintaining
equivalent flow completion times across all flow sizes. We
further validate the stability of this result across a range of
workloads, network scales, and cost factors.

2 Network efficiency

The reality of datacenter networks is one of non-stop
change: developers are continuously deploying new applica-
tions and updating existing applications, and user behavior
is in a constant state of flux. As a result, operators cannot
risk designing networks that support only a narrow range of
workloads, and instead must choose a design that supports a
wide range of workloads, applications, and user behavior.

2.1 Workload properties

One saving grace of the need to service a wide range
of workloads is the likelihood that there will, in fact, be
a spectrum of needs in practice. A concrete example is
the distribution of flow sizes, which is known to be highly
skewed in today’s networks: Figure [I] shows data published
by Microsoft [4} 21]] (Websearch and Datamining) and Face-
book [39] (Hadoop) depicting the distributions of traffic ac-
cording to individual flows (top) and total number of trans-
mitted bytes (bottom) that we consider in this paper. The vast
majority of bytes are in bulk flows, not the short, latency-
sensitive ones, suggesting that to make the most out of avail-
able capacity, an ideal network must seek to minimize the
bandwidth tax paid on bulk traffic while not substantially im-
pacting the propagation delay experienced by short flows.

While there are myriad ways to measure a network’s suit-
ability for a given workload, flow completion time (FCT) is

1 T mr—
) - L
¢ "
5 I/ /"/
Y— L ‘f"
L? 05 yd Datamining [21]
a /' " ----- Websearch [4]
)] - = =Hadoop [39]
0 o g,) - L L L L
10> 10° 10* 10®° 10®° 107 108 10°
Flow size (bytes)
1 : . . 7 .
$ Datamining [21] Y 1
E‘ ----- Websearch [4] '," "
- /
505 Hadoop [39] / ' |
; 1
% ’/, 1
O ‘a‘, 2 ,
0 NI S R P -

10> 10° 10* 10° 10®° 107 10® 10°
Flow size (bytes)

Figure 1: Published empirical flow-size distributions.

frequently offered as a useful figure of merit [[14] due to its
applicability across a wide range of workloads. The flow
completion time of small flows is constrained by the under-
lying network’s propagation delay. Thus, lowering the net-
work diameter and/or reducing queuing reduces the FCT for
this type of traffic. On the other hand, the FCT of bulk traffic
is governed by the available capacity along a flow’s path.

Because the FCT of short flows is dictated by propaga-
tion delay, such traffic is commonly referred to as “latency-
sensitive” or, equivalently, “low-latency”. (While applica-
tions may be equally sensitive to the completion time of
larger flows, their FCT is dominated by available band-
width.) In today’s networks, flows are classified into these
categories either explicitly (e.g., by application type, port
number, or sender-based rules), or implicitly (e.g., by re-
maining flow size for shortest-remaining-time-first (SRTF)
scheduling). Opera is agnostic to the manner in which traf-
fic is classified; for our purposes latency-sensitive and short
flows are synonymous. Because latency-sensitive traffic’s
overall impact on network capacity is negligible in today’s
workloads, it suffices to use priority queuing to ensure short
flows receive unimpeded service while allowing bulk traffic
to consume any remaining capacity [[7, 22]. The challenge is
to simultaneously provide high-capacity paths while main-
taining a short path length.

2.2 The “big switch” abstraction

If cost (and practicality) were no object, a perfect network
would consist of one large, non-blocking switch that con-
nects all the end points. It is precisely such a “big switch”
illusion that scale-out packet-switched network fabrics based
on folded-Clos topologies [2} 21} [37] were designed to pro-
vide. These topologies rely on multiple stages of packet
switches interconnected with shuffle networks. The abun-
dance of packet switches at each stage and surfeit of links
between them ensures that there is sufficient capacity to sup-

Folded-Clos

u < k/2 uplinks to
Agg/Pod pkt. switches

ToR switch

d >k/2 downlinks

Expander
u > kI2 uplinks to
other ToRs

X

d <k/2 downlinks

Opera (Reconfiguring)
u = (k/2) — 1 uplinks
to core circuit switches

d = k/2 downlinks

Figure 2: Oversubscribed folded-Clos networks allocate fewer uplinks than downlinks, and static expander-graph-based net-
works typically allocate more upward ports than downward ports. In Opera, the ToR switch is provisioned 1:1. When the circuit
switch is reconfiguring, the associated ToR port cannot carry traffic through that uplink.

port any mixture of (admissible) inter-server communica-
tion. Proposals such as Hedera [3]], pHost [19], HULL [5]],
NDP [24], PIAS [7], and Homa [36]] introduce flow schedul-
ing techniques that assign traffic to well-chosen paths to
maximize throughput while minimizing in-network queuing
when servicing a mixture of bulk and low-latency traffic.

2.3 Reduced capacity networks

While full-bandwidth “big switch” network designs are
ideal in the sense that they provide operators with the max-
imum flexibility to deploy services, schedule jobs, and dis-
aggregate storage and compute, they are impractical to con-
struct at scale. Indeed, published reports confirm the largest
datacenter networks in existence, while based upon folded-
Clos topologies, are not fully provisioned [15) 41]. More-
over, some have observed that packet-switching technology
may not be able to keep up as link rates surpass 400 Gb/s, so
it is unclear how much longer the “big switch” abstraction
will even be feasible [35]. Hence, researchers and practition-
ers alike have considered numerous ways to under-provision
or “over-subscribe” network topologies.

One way to view over-subscription in a rack-based data-
center is to consider how each individual ToR switch is pro-
visioned. Consider a scenario in which servers in a cluster
or datacenter are organized into racks, each with a k-radix
ToR packet switch that connects it to the remainder of the
network. We say that a ToR with d connected servers has d
“downward” facing ports. A ToR with u ports connected to
the rest of the network has u “upward” facing ports, or up-
links. (In a fully populated ToR, d + u = k.) In this context,
we now overview existing proposals of how to interconnect
such racks.

Over-subscribed Fat Trees: As shown in the left-most
portion of Figure[2] designers can build M:1 over-subscribed
folded-Clos networks in which the network can deliver only
(1/M = u/d) the bandwidth of a fully-provisioned design.
Common values of (d : u) are between 3:1 and 5:1 [41]. The
cost and bandwidth delivered in folded-Clos networks scale
almost linearly according to the over-subscription factor, and
so decreasing overall cost necessitates decreasing the maxi-
mum network throughput—and vice versa. Routing remains
direct, however, so over-subscription does not introduce a

bandwidth tax; rather, it severely reduces the available net-
work capacity between end points in different racks. As a
result, application frameworks such as MapReduce [13] and
Hadoop [18]] schedule jobs with locality in mind in an effort
to keep traffic contained with a rack.

Expander topologies: To address the limited cross-
network bandwidth available in over-subscribed Fat Trees,
researchers have proposed alternative reduced-capacity net-
work topologies based on expander graphs. In these pro-
posals, the u uplinks from each ToR are directly con-
nected to other ToRs, either randomly [42] or deterministi-
cally [27,129,143]], reducing the number of switches and inter-
switch links internal to the network itself. Expander-graph-
based network topologies are sparse graphs with the property
that there are many potential short paths from a given source
to a particular destination.

Because there are no in-network switches, packets must
“hop” between ToRs a number of times to reach their ulti-
mate destination, resulting in a bandwidth tax. An expander
graph with an average ToR-to-ToR hop count of Ly, pays an
overall bandwidth tax rate of (L4,, — 1) x in expectation be-
cause individual packets must indirect across a number of in-
network links. The average path lengths for large networks
can be in the range of 4-5 hops, resulting in a bandwidth tax
rate of 300—400%. Moreover, a recent proposal [29] employs
Valiant load balancing (VLB)—which imposes an additional
level of explicit indirection—to address skewed traffic de-
mands, doubling the bandwidth tax in some circumstances.
One way that expanders counter-act their high bandwidth tax
rate is by over-provisioning: ToRs in expander topologies
typically have more upward-facing ports than down (u > d,
as shown in the center of Figure —and, hence, far more
upward-facing ports than over-subscribed Fat Trees—which
provides more in-network capacity. Said another way, the
impact of the bandwidth tax is reduced by a factor of u/d.

Reconfigurable topologies: In an effort to reduce the
bandwidth tax, other proposals rely on some form of recon-
figurable link technology, including RF [28| 45]], free-space
optical [20, 23], and circuit switching [[16| |31} 38| 140} 44].
Most reconfigurable topologies dynamically establish end-
to-end paths within the network core in response to traffic
demand, although RotorNet [34]] employs a fixed, determin-

istic schedule. In either case, these networks establish and
tear down physical-layer links over time. When the topology
can be matched to the demand—and setting aside latency
concerns—traffic can be delivered from source to destina-
tion in a single hop, avoiding any bandwidth tax. In some
cases, similar to expander-based topologies, they employ 2-
hop VLB [34] 40], resulting in a 100% bandwidth tax rate.
A fundamental limitation of any reconfigurable topology,
however, is that during the time a link/beam/circuit (for sim-
plicity we will use the latter term in the remainder of the pa-
per) is being provisioned, it cannot convey data. Moreover,
most proposals do not provision links between all sources
and destinations at all times, meaning that traffic may in-
cur significant delay as it waits for the appropriate circuit to
be provisioned. For existing proposals, this end-to-end de-
lay is on the order of 10-100s of milliseconds. Hence, pre-
vious proposals for reconfigurable network topologies rely
on a distinct, generally packet-switched, network to service
latency-sensitive traffic. The requirement for a separate net-
work built out of a distinct technology is a significant practi-
cal limitation and source of cost and power consumption.

3 Design

We start with an overview of our design before working
through an example. We then proceed to describe how we
construct the topology of a given network, how routes are
chosen, how the network moves through its fixed set of con-
figurations, and address practical considerations like cabling
complexity, switching speeds, and fault tolerance.

3.1 Overview

Opera is structured as a two-tier leaf-spine topology, with
packet-switched ToRs interconnected by reconfigurable cir-
cuit switches as shown in Figure[5] Opera’s design is based
around two fundamental starting blocks that follow directly
from the requirements for small network diameter and low
bandwidth tax.

Expansion for short paths: Because the flow comple-
tion time of short, latency-sensitive flows is gated by end-
to-end delay, we seek a topology with the lowest possible
expected path length. Expander-based topologies are known
to be ideal [27]]. Expanders also have good fault-tolerance
properties; if switches or links fail, there are likely to be al-
ternative paths that remain. Thus, to efficiently support low-
latency traffic, we require a topology with good expansion
properties at all times.

Reconfigurability to avoid the bandwidth tax: A fully-
connected graph (i.e. full mesh) could avoid a bandwidth
tax entirely, but is infeasible to construct at scale. Rather
than providing a full mesh in space, reconfigurable circuit
switches offer the ability to establish, over time, direct one-
hop paths between every rack pair using a relatively small
number of links. Because bulk flows can generally amortize
modest reconfiguration overheads if they result in increased

Swithl: [1A 1B | [1A] 1B]

swith2: [2A § 2B | [1 2a {28]

switch3: [3A § 3B | [3B] 3A {3B]

swicha: [4A § 4B | [8 § aa 1|
Time Time

(a) Simultaneous reconfig. (b) Offset reconfiguration

Figure 3: Reconfiguring all switches in unison (a) leads to
periodic disruptions; staggered reconfigurations (b) ensure
some paths are always available.

throughput, we incorporate reconfigurability into our design
to minimize the bandwidth tax on bulk traffic.

Opera combines the elements of expansion and reconfig-
urability to efficiently (and simultaneously) serve both low-
latency and bulk traffic with low flow completion time. Sim-
ilar to RotorNet [34], our design incorporates reconfigurable
circuit switches that cyclically set up and tear down direct
connections between ToRs, such that after a “cycle time” of
connectivity, every ToR has been connected to every other
ToR. We take advantage of ToR-uplink parallelism to stagger
the reconfigurations of multiple circuit switches, allowing
“always-on” multi-hop connectivity between all ToR pairs.

Critically, the combination of circuits at any time forms
an expander graph. Thus, during a single cycle, every packet
has a choice between waiting for a bandwidth-tax-avoiding
direct connection, or being immediately sent over a multi-
hop path through the time-varying expander. The end result
is a single fabric that supports bulk and low-latency traffic as
opposed to two separate networks used in hybrid approaches.
As we will show, Opera does not require any runtime selec-
tion of circuit assignments or system-wide collection of traf-
fic demands, vastly simplifying its control plane relative to
dynamic approaches such a ProjecToR [20] and Mordia [38]].

3.1.1 Eliminating reconfiguration disruptions

Circuit switches impose a technology-dependent reconfig-
uration delay, necessitating that flows be re-routed before
reconfiguration. Even in a network with multiple circuit
switches, if all switches reconfigure simultaneously (Fig-
ure [3a)), the global disruption in connectivity requires routes
to reconverge. For today’s switching technologies, this
would lead to traffic delays that could severely impact the
flow completion time of short, latency-sensitive flows. To
avoid this scenario and allow for low-latency packet delivery,
Opera offsets the reconfigurations of circuit switches. For
example, in the case of small topologies with few switches,
at most one switch may be reconfiguring at a time (Fig-
ure [3b)), allowing flows traversing a circuit with an impend-
ing reconfiguration to be migrated to other circuits that will
remain active during that time period (for large-scale net-
works with many circuit switches, it is advantageous to re-
configure more than one switch at a time as described in

1 ,
——Opera "
0.8 [|==="u =7 Expander | |
3:1 Folded Clos| |
u 0.6 [
a i
Ooaf I
R
1]
0 i ! ‘ ‘ ‘
0 1 2 3 4 5 6
Path length (# ToR-to-ToR hops)
Figure 4: CDF of path lengths for equal-cost 648-host

Opera, 650-host u = 7 expander, and 648-host 3:1 folded-
Clos networks. (CDFs staggered slightly for clarity.)

Appendix [B). As a result, while Opera is in near-constant
flux, changes are incremental and connectivity is continuous
across time.

3.1.2 Ensuring good expansion

While offsetting reconfigurations guarantees continuous
connectivity, it does not, by itself, guarantee complete con-
nectivity. Opera must simultaneously ensure that (1) multi-
hop paths exist between all racks at every point in time to
support low-latency traffic, and (2) direct paths are provi-
sioned between every rack-pair over a fixed period of time
to support bulk traffic with low bandwidth tax. We guaran-
tee both by implementing a (time-varying) expander graph
across the set of circuit switches.

In Opera, each of a ToR’s u uplinks is connected to a (ro-
tor) circuit switch [33] that, at any point in time, implements
a (pre-determined) random permutation between input and
output ports (i.e., a “matching”). The inter-ToR network
topology is then the union of # random matchings, which,
for u > 3, results in an expander graph with high probabil-
ity [6]. Moreover, even if a switch is reconfiguring, there are
still # — 1 active matchings, meaning that if u > 4, the net-
work will still be an expander with high probability, no mat-
ter which switch is reconfiguring. In Opera, u = k/2, and k
is on the order of 10s of ports for today’s packet switches.

Figure [4] shows the distribution of path lengths in one ex-
ample 648-host network considered in our evaluation, where
u = 6. Opera’s path lengths are almost always substantially
shorter than those in a Fat Tree that connects the same num-
ber of hosts, and only marginally longer than an expander
with u = 7 which we argue later has similar cost, but per-
forms poorly for certain workloads. Clearly, ensuring good
expansion alone is not an issue with modest switch radices.
However, Opera must also directly connect each rack pair
over time. We achieve this by having each switch cycle
through a set of matchings; we minimize the total number
of matchings by constructing a disjoint set.

3.2 Example
Figure[5]depicts a small-scale Opera network. Each of the
eight ToRs has four uplinks to four different circuit switches

(with one potentially down due to reconfiguration at any par-
ticular moment). By forwarding traffic through those ToRs,
they can reach any ToRs to which they, in turn, are con-
nected. Each circuit switch has two matchings, labeled A
and B (note that all matchings are disjoint from one an-
other). In this example topology, any ToR-pair can commu-
nicate by utilizing any set of three matchings, meaning com-
plete connectivity is maintained regardless of which match-
ings happen to be implemented by the switches at a given
time. Figure 5| depicts two network-wide configurations. In
Figure [5a| switches 2—4 are implementing matching A, and
in Figure [5b] switches 2—4 implement matching B. In both
cases switch 1 is unavailable due to reconfiguration.

In this example, racks 1 and 8 are directly connected by
the configuration shown in Figure [5b] and so the lowest
bandwidth-tax way to send bulk data from 1 to 8 would be to
wait until matching B is instantiated in switch 2, and then to
send the data through that circuit; such traffic would arrive at
ToR 8 in a single hop. On the other hand, low-latency traffic
from ToR 1 to ToR 8 can be sent immediately, e.g. during the
configuration shown in Figure [5a] and simply take a longer
path to get to ToR 8. The traffic would hop from ToR 1 to
ToR 6 (via switch 4), then to ToR 8 (via switch 2), and in-
cur a 100% bandwidth tax. Although not highlighted in the
figure, similar alternatives exist for all rack pairs.

3.3 Topology generation

The algorithm to generate an Opera topology is as fol-
lows. First, we randomly factor a complete graph (i.e. N x N
all-ones matrix) into N disjoint (and symmetric) matchings.
Because this factorization can be computationally expensive
for large networks, we employ graph lifting to generate large
factorizations from smaller ones. Next, we randomly assign
the N matchings to circuit switches, so that each switch has
N /u matchings assigned to it. Finally, we randomly choose
the order in which each switch cycles through its matchings.
These choices are fixed at design time, before the network is
put into operation; there is no topology computation during
network operation.

Because our construction approach is random, it is possi-
ble (although unlikely) that a specific Opera topology real-
ization will not have good expander properties at all points
across time. For example, the combination of matchings in a
given set of u — 1 switches at a particular time may not consti-
tute an expander. In this case, it would be trivial to generate
and test additional realizations at design time until a solution
with good properties is found. This was not necessary in our
experience, as the first iteration of the algorithm always pro-
duced a topology with near-optimal properties. We discuss
the properties of these graphs in detail in Appendix D]

3.4 Forwarding

We are now left to decide how to best serve a given flow
or packet: (1) send it immediately over multi-hop expander
paths and pay the bandwidth tax (we refer to these as “indi-

Circuit
switches

ToRs

(a) Indirect path

(b) Direct path

Figure 5: An Opera topology with eight ToR switches and four rotor circuit switches (from RotorNet [34]). Two different
paths from rack 1 to rack 8 are highlighted: (a) a two-hop path in red, and (b) a one-hop path in blue. Each direct inter-rack
connection is implemented only once per configuration, while multi-hop paths are available between each rack-pair at all times.

rect” paths), or (2) delay transmission and send it over one-
hop paths to avoid the bandwidth tax (we refer to these as
“direct” paths). For skewed traffic patterns that can tolerate
delay, two-hop paths based on Valiant load balancing can be
used as well. Our baseline approach is to decide based on the
flow size. Since the delay in waiting for a direct path can be
an entire cycle time, we only let flows that are long enough
to amortize that delay use direct paths, and place all other
traffic on indirect paths. However, we can do even better if
we know something about application behavior. Consider an
all-to-all shuffle operation, where a large number of hosts si-
multaneously need to exchange a small amount of data with
one another. Although each flow is small, there will be sig-
nificant contention, extending the flow completion time of
these flows. Minimizing bandwidth tax is critical in these
situations. With application-based tagging, Opera can route
such traffic over direct paths.

3.5 Synchronization

Opera employs reconfigurable circuit switches, and so its
design requires a certain level of synchronization within the
system to operate correctly. In particular, there are three
synchronization requirements that must be met: (1) ToR
switches must know when core circuit switches are recon-
figuring, (2) ToR switches must update their forwarding ta-
bles in sync with the changing core circuits, and (3) end
hosts must send bulk traffic to their local ToR during times
when the ToR is directly connected to the destination (to pre-
vent excessive queueing in the ToR). In the first case, since
each ToR’s uplink is connected directly to one of the cir-
cuit switches, the ToR can monitor the signal strength of the
transceiver attached to that link to re-synchronize with the
circuit switch. Alternatively, the ToR could rely on IEEE
1588 (PTP), which can synchronize switches to within £1
ps [1]. For low-latency traffic, end hosts simply transmit
packets immediately, without any coordination or synchro-
nization. For bulk traffic, end hosts transmit when polled
by their attached ToR. To evaluate the practicality of this
synchronization approach, we built a small-scale prototype
based on a programmable P4 switch, described in Section [6]

Opera can tolerate arbitrary bounds on

(de-)synchronization by introducing “guard bands” around
each configuration, in which no data is sent to ensure the
network is configured as expected when transmissions do
occur. In our design, each ps of guard time contributes a
1% relative reduction in low-latency capacity and a 0.2%
reduction for bulk traffic. In practice, if any component
becomes de-synchronized beyond the guard-band tolerance,
it can simply be declared failed (see Section [3.6.2).

3.6 Practical considerations

While Opera’s design draws its power from graph-
theoretic underpinnings, it is also practical to deploy. Here,
we consider two important constraints on real-world net-
works.

3.6.1 Cabling and switch complexity

Today’s datacenter networks are based on folded-Clos
topologies which use perfect-shuffle cabling patterns be-
tween tiers of switches. While proposals for static expander
graphs alter that wiring pattern [42] leading to concerns
about cabling complexity, Opera does not. In Opera, the
interconnection complexity is contained within the circuit
switches themselves, while the inter-switch cabling remains
the familiar perfect shuffle. In principle, Opera can be imple-
mented with a variety of electronic or optical circuit switch
technologies. We focus on optical switching for our analysis
due to its cost and data-rate transparency benefits. Further,
because each circuit switch in Opera must only implement
N /u matchings (rather than O(N!)), Opera can make use of
optical switches with limited configurability such as those
proposed in RotorNet [34]), which have been demonstrated
to scale better than optical crossbar switches [17}133].

3.6.2 Fault tolerance

Opera recovers from link, ToR, and circuit switch failures
using common routing protocol practices: ToRs use a “hello”
protocol initiated at the beginning of each new matching to
both detect failures and share failure information with other
ToRs. Upon receiving information of a new failure, a ToR re-
computes and updates its routing tables to route around failed
components. We take advantage of Opera’s cyclic connectiv-
ity to detect and communicate failures: each time a new cir-
cuit is configured, the ToR CPUs on each end of the link ex-

switch1 | [|_|_ . Slice

switch2 — & | [| A C
Switch ¢ i ' : ' :
Slice! i Slice! Slice! ; : '
1 3 1 >
1 icl ¢! ! ' :
Time ' : ' € r

(a) Offset circuit reconfiguration (b) Slice time constants

Figure 6: (a) A set of ¢ circuit switches with offset recon-
figurations forms a series of topology slices. (b) The time
constants associated with a single slice: € is the worst-case
end-to-end delay for a low-latency packet to traverse the net-
work and r is the circuit switch reconfiguration delay.

change a short sequence of hello messages (which also con-
tain information of new failures, if applicable). If no hello
messages are received within a configurable amount of time,
the ToR marks the link in question as bad. Because all ToR-
pair connections are established every cycle, any ToR that
remains connected to the network will learn of any failure
event within at most two cycles (1-10ms).

4 Implementation

Here, we describe the implementation details of Opera. To
ground our discussion, we refer to an example 108-rack, 648-
host topology based on k = 12 (we generalize this analysis
in our evaluation).

4.1 Defining bulk and low-latency traffic

In Opera, traffic is defined as low-latency if it cannot wait
until a direct bandwidth-efficient path becomes available.
Thus the division between low-latency and bulk traffic de-
pends on the rate at which Opera’s circuit switches cycle
through direct matchings. The faster Opera steps through
these matchings, the lower the overhead for sending traffic
on direct paths, and thus the larger the fraction of traffic that
can utilize these paths. Two factors impact cycle speed: cir-
cuit amortization and end-to-end delay.

Circuit amortization: The rate at which a circuit switch
can change matchings is technology dependent. State-of-the-
art optical switches with the port count and insertion loss
properties needed for practical datacenter deployment have
reconfiguration delays on the order of 10 us [34} 38| 20].
A 90% amortization of this delay would limit circuit recon-
figuration events to every 100 ps. For large networks em-
ploying parallel circuit switches, approximately 10-20 such
matchings would be necessary [34], meaning that any flow
than can amortize a 1-2 ms increase in its FCT could take
the bandwidth-efficient direct paths (and shorter flows would
take indirect paths).

End-to-end delay: Perhaps surprisingly, a second tim-
ing constraint, end-to-end delay, has a larger impact on cy-
cle time. In particular, consider a low-latency packet that is

emitted from a host NIC. At the first ToR, the packet is routed
toward its destination, and in general, at each hop along the
way, each ToR routes the packet along an expander-graph
path. If, during the packet’s journey, the circuit topology
changes, it is possible the packet could be caught in a loop
or redirected along a sub-optimal path. Dropping the packet
immediately (and expecting the sender to resend it) would
significantly delay the flow completion time of that flow.
Our approach, depicted in Figure [6] to avoid the prob-
lems described above, requires that subsequent circuit re-
configurations be spaced by at least the sum of the end-to-
end delay under worst-case queuing, €, and the reconfigura-
tion delay, r. We refer to this time period &€+r as a “topol-
ogy slice”. Any packets sent during a slice are not routed
through the circuit with an impending reconfiguration dur-
ing that slice. This way, packets always have at least € time
to make it through the network before a switch re-configures.
The parameter € depends on the worst-case path length
(in hops), the queue depth, the link rate, and propagation
delay. Path length is a function of the expander, while the
data rate and propagation delay are fixed; the key driver of
€ is the queue depth. As explained in the following sec-
tion, we choose a shallow queue depth of 24 KB (8 1500-
byte full packets + 187 64-byte headers). When combined
with a worst-case path length of 5 ToR-to-ToR hops (Fig-
ure [), 500-ns propagation delay per hop (100 meters of
fiber), and 10-Gb/s link speed, we set € to 90 us. The inter-
reconfiguration period on a single switch is about 6¢, yield-
ing a duty cycle of 98% and a cycle time of 10.7 ms. For
these time constants, flows >15 MB will have a completion
time well within a factor of 2 of their ideal (link-rate-limited)
FCT. As we will show in Section[5] depending on traffic con-
ditions, shorter flows may benefit from direct paths as well.

4.2 Transport protocols

Opera requires transport protocols that can (1) immedi-
ately send low-latency traffic into the network, while (2) de-
laying bulk traffic until the appropriate time. To avoid head-
of-line blocking, NICs and ToRs each perform priority queu-
ing.
4.2.1 Low-latency transport

As discussed in the previous section, minimizing the cy-
cle time is predicated on minimizing the queue depth for
low-latency packets at ToRs. The recently proposed NDP
protocol [24] is a promising choice because it achieves high
throughput with very shallow queues. We find that 12-KB
queues work well for Opera (each port has an additional
equal-sized header queue). NDP also has other beneficial
characteristics for Opera, such as zero-RTT convergence and
no packet metadata loss to eliminate RTOs. Despite being
designed for fully-provisioned folded Clos networks, we find
in simulation that NDP works well with minimal modifica-
tion in Opera, despite Opera’s continuously-varying topol-
ogy. Other transports, like the recently proposed Homa pro-

tocol [36], may also be a good fit for low-latency traffic in
Opera, but we leave this to future work.

4.2.2 Bulk transport

Opera’s bulk transport protocol is relatively simple. We
draw heavily from the RotorLB protocol proposed in Rotor-
Net [34], which buffers traffic at end hosts until direct con-
nections to the destination are available. When bulk traffic is
heavily skewed, and there is necessarily spare capacity else-
where in the network, RotorLB automatically transitions to
using two-hop routing (i.e. Valiant load balancing) to im-
prove throughput. Unlike low-latency traffic, which can be
sent at any time, bulk traffic admission is coordinated with
the state of the circuit switches, as described in Section [3.5}
In addition to extending RotorLB to work with offset re-
configurations, we also implemented a NACK mechanism
to handle cases where large bursts of priority-queued low-
latency traffic can cause bulk traffic queued at the ToR to be
delayed beyond the transmission window and dropped at the
ToR. Retransmitting a small-to-moderate number of packets
does not significantly affect the FCT of bulk traffic.

4.3 Packet forwarding

Opera relies on ToR switches to route packets along di-
rect or multi-hop paths depending on the requested network
service model. We implement this routing functionality us-
ing the P4 programming language. Each ToR switch has an
in-built register that represents the current network config-
uration, updated either in-band or via PTP. When a packet
arrives at the first ToR switch, it annotates the packet’s meta-
data with the value of the configuration register. What hap-
pens next, and at subsequent ToR switches, depends on the
value of the DSCP field. If that field indicates a low-latency
packet, then the switch consults a low-latency table to de-
termine the next hop along the expander path for the current
configuration, and then forwards the packet out that port. If
the field indicates bulk traffic, then the switch consults a bulk
traffic table which indicates which circuit switch—if any—
provides a direction connection, and the packet is forwarded
to that port. We measure the amount of in-switch memory
required to implement this program for various datacenter
sizes in Section

5 Evaluation

We evaluate Opera in simulation. Initially, we focus on
a concrete 648-host network, comparing to cost-equivalent
folded-Clos, static expander, non-hybrid RotorNet, and
(non-cost-equivalent) hybrid RotorNet networks. We then
validate against a range of network sizes, skewed workloads,
and underlying cost assumptions. We use the htsim packet
simulator [26]], which was previously used to evaluate the
NDP protocol [24], and extend it to model static expander
networks and dynamic networks. We also modify NDP to
handle <1500 byte packets, which is necessary for some
workloads considered. Both the folded-Clos and static ex-

pander use NDP as the transport protocol. Opera and Rotor-
Net use NDP to transport low-latency traffic and RotorLLB for
bulk traffic. Because Opera explicitly uses priority queuing,
we simulate the static networks with idealized priority queu-
ing where appropriate to maintain a fair comparison. Follow-
ing prior work [20,[29]], we set the link bandwidth to 10 Gb/s.
We use a 1500-byte MTU and set the propagation delay to
500 ns between ToRs (equivalent to 100 m of fiber).

5.1 Real-world traffic

We start by considering Opera’s target scenario, a work-
load with an inherent mix of bulk and low-latency traf-
fic. Here we consider the Datamining workload from Mi-
crosoft [21], and use a Poisson flow-arrival process to gener-
ate flows. We vary the Poisson rate to adjust the load on the
network, defining load relative to the aggregate bandwidth
of all host links (i.e., 100% load means all hosts are driving
their edge links at full capacity, an inadmissible load for any
over-subscribed network). As shown in the top portion of
Figure[I] flows in this workload range in size from 100 bytes
to 1 GB. We use Opera’s default configuration to decide how
to route traffic: flows <15 MB are treated as low-latency
and are routed over indirect paths, while flows >15 MB are
treated as bulk and are routed over direct paths.

Figure[/|shows the performance of Opera as well as cost-
comparable 3:1 folded-Clos and u = 7 static expander net-
works for various offered loads. We also compared to a
hybrid RotorNet which faces one of the six ToR uplinks to
a multi-stage packet switched network to accomodate low-
latency traffic (for 1.33x the cost), and a cost-equivalent
non-hybrid RotorNet with no packet switching above the
ToR. We report the 99th percentile FCT except in the case
of 1% load, where the variance in the tail obscures the trend
and so report the average instead. Note that Opera priority
queues all low-latency flows, while by default the static net-
works do not. For fairness, we also present the expander and
folded Clos with “ideal” priority queuing—that is, removing
all flows >15 MB. For reference, we also plot the minimum
achievable latency in each network, derived from the end-to-
end delay and link capacity.

The static networks start to saturate past 25% load: folded
Clos have limited network capacity, and expanders have high
bandwidth tax. Opera, on the other hand, is able to service
40% load despite having lower innate capacity than the cost-
comparable static expander. Opera offloads bulk traffic onto
bandwidth-efficient paths, and only pays bandwidth tax on
the small fraction (4%) of low-latency traffic that transits in-
direct paths, yielding an effective aggregate bandwidth tax of
8.4% for this workload. Hybrid RotorNet, even with 1/6/ of
its core capacity packet-switched (for 33% higher cost than
the other networks), delivers longer flow completion times
than Opera for short flows at loads >10%. A non-hybrid
(i.e. all-optical-core) RototNet would be cost-equivalent to
the other networks, but its latency for short flows would be

\‘% 5i| © 1%load, avg. g g of| © 1%load, avg. /
o L0°F| + 10% load, 99%-tile s o L0°F| + 10% load, 99%-tile o
£ 25% load, 99%-tile e £ 25% load, 99%-tile v

= r; = /

S S

k3 9

Q. Q

£ £

o o

o o

2 3

5 o

w [T

10® 10* 10° 10°
Flow size (bytes)

10° 10* 10° 10° 107 10® 10°
Flow size (bytes)

(a) 3:1 folded Clos (b) u =17 expander

10" 10° 10°

Flow completion time (s)

s \"’3 5i| © 1%load, avg.
10 b o L0°F| + 10% load, 99%-tile
(No hybrid, =z £ 25% load, 99%-tile
W ‘; o 30% load, 99%-tile B
10% S 10} * 40% load, 99%-tile -2
(Hybrid, 72 4 X
3 3
+33% cost) % < 15 <
[— g 8 10? 5
[42 =\ Tia T3
S 2 g 2 g

10° 10* 10° 10° 107 10® 10°
Flow size (bytes)

(d) Opera

10° 10* 10° 10° 107 10® 10°
Flow size (bytes)

(c) RotorNet

Figure 7: FCTs for the Datamining workload. All networks are cost comparable except hybrid RotorNet, which is 1.33x more
expensive. In (a) and (b), dashed lines are without priority queuing, and solid lines are with ideal priority queuing.

1
- — Opera
207%r| T u=7exp.
s 31F.C.
2 05
e
I’S .25 | brssamnarmaivaeims s ass s o aam s s s naraas s saptnae 2, <
\
0 = -
100 150 200 250
Time (ms)

Figure 8: Network throughput over time for a 100-KB all-
to-all Shuffle workload. Opera carries all traffic over direct
paths, greatly increasing delivered bandwidth. (The small
“step” down in Opera’s throughput around 50 ms is due to
some flows finishing in one additional cycle.)

three orders of magnitude higher than the other networks, as
shown in Figure

5.2 Bulk traffic

Opera’s superiority in the mixed case stems entirely from
its ability to avoid paying bandwidth tax on the bulk traf-
fic. We highlight this ability by focusing on a workload in
which all flows are routed over direct paths. We consider
an all-to-all shuffle operation (common to MapReduce style
applications), and choose the flow size to be 100 KB based
on the median inter-rack flow size reported in a Facebook
Hadoop cluster [39] (c.f. Figure[I). Here we presume the
application tags its flows as bulk, so we do not employ flow-
length based classification; i.e., Opera does not indirect any
flows in this scenario. We let all flows start simultaneously
in Opera, as RotorLB accommodates such cases gracefully,
and stagger flow arrivals over 10 ms for the static networks,
which otherwise suffer from severe startup effects.

Figure |8 shows the delivered bandwidth over time for the
different networks. The limited capacity of the 3:1 Clos and
high bandwidth tax rates of the expander significantly extend
the FCT of the shuffle operation, yielding 99th-percentile
FCTs of 227 ms and 223 ms, respectively. Opera’s direct
paths are bandwidth-tax-free, allowing higher throughput
and reducing the 99th-percentile FCT to 60 ms.

5.3 Only low-latency flows

Conversely, workloads in which all flows are routed over
indirect low-latency paths represents the worst case for
Opera, i.e., it always pays a bandwidth tax. Given our 15
MB threshold for bulk traffic, it is clear from the bottom por-
tion of Figure [I] that the Websearch workload [4] represents
such a case. A lower threshold would avoid the bandwidth
tax, but would require a shorter cycle time to prevent a sig-
nificant increase in FCT for these short “bulk” flows.

Figure [9] shows the results for the Websearch workload,
again under a Poisson flow arrival process. All networks
provide equivalent FCTs across all flow sizes for loads at
or below 10%, at which point Opera is not able to admit ad-
ditional load. Both the 3:1 folded Clos and expander saturate
(slightly) above 25% load, but at that point both deliver FCTs
nearly 100x worse than at 1% load. While Opera forwards
traffic in the same manner as the expander in this scenario,
it has only 60% of the capacity and pays an additional 41%
bandwidth tax due to its longer expected path length.

5.4 Mixed traffic

To drive home Opera’s ability to trade off low-latency ca-
pacity against lower effective bandwidth taxes, we explic-
itly combine the Websearch (low-latency) and Shuffle (bulk)
workloads from above in varying proportions. Figure [I0]
shows the aggregate network throughput as a function of
Websearch (low-latency) traffic load, defined as before as a
fraction of the aggregate host link capacity. We see that for
low Websearch load, Opera delivers up to 4 x more through-
put than the static topologies. Even at 10% Websearch load
(near its maximum admissible load), Opera still delivers al-
most 2x more throughput. In essence, Opera “gives up”
a factor of 2 in low-latency capacity (due to its relatively
under-provisioned ToRs) to gain a factor of 2—4 in bulk ca-
pacity from its vastly lower effective bandwidth tax.

5.5 Fault tolerance

Next, we demonstrate Opera’s ability to maintain and re-
establish connectivity in the face of component failures by
injecting random link, ToR, and circuit switch failures into
the network. We then step through the topology slices and
record (1) the number of ToR pairs that were disconnected in

—_ O 1% load, avg. — O 1%load, avg.
() 5 + 5% load, 99%-tile # [%) 5 + 5% load, 99%-tile
310 10% load, 99%-tile A 4 210 10% load, 99%-tile
o ¢ 15% load, 99%-tile - o O 15% load, 99%-tile
E #* 20% load, 99%-tile E #* 20% load, 99%-tile
=1 104 25% load, 99%-tile =1 104 25% load, 99%-tile
c c
2 2
3 3 8
o 10 a 10
£ S
3 38
2 2

z 10 =z 10
o Ke)
o o= [

10* 10t

O 1% oad, avg
+ 5% load, 99%-tile
10% load, 99%-tile

= = =
o o o
w S w

[y
o
)

Flow completion time (us)

[
o
-

10° 108 107 10°

Flow size (bytes)

(a) 3:1 folded Clos

(b) u =7 expander

10° 108 107

Flow size (bytes)

107

108
Flow size (bytes)

(c) Opera

Figure 9: FCTs for the Websearch workload. Opera carries all traffic over indirect paths. Opera supports up to 10% low-latency
traffic load with near-equivalent FCTs to the 3:1 folded Clos and u = 7 expander.

1 . .
—e—QOpera
H0.8 —v—u=7exp.|]
a 3:1F.C.
061 | 4x
=
>
204 i
ey 1
= . -
0.2F £ 3 b3 £ 3 ¥ £ 3
: 2x 0
>
O L L L ' L 2 L
1% 25% 5% 10% 20% 40%

Websearch load

Figure 10: Network throughput vs. Websearch traffic load
for a combined Websearch/Shuffle workload.

the worst-case topology slice and (2) the number of unique
disconnected ToR pairs integrated across all slices. Figure[IT]
shows that Opera can withstand about 4% of links failing,
7% of ToRs failing, or 33% (2 out of 6) of circuit switches
failing without suffering any loss in connectivity. Opera’s
robustness to failure stems from the good fault tolerance
properties of expander graphs. As discussed in Appendix [E]
Opera has better fault tolerance than a 3:1 folded Clos, and
is less tolerant than the u = 7 expander (which has higher
fanout). Maintaining connectivity under failure does require
some degree of path stretch in Opera; Appendix [E] discusses
this in more detail as well.

5.6 Network scale and cost sensitivity

Finally, we examine Opera’s relative performance across
a range of network sizes and cost assumptions. We intro-
duce a parameter &, which is defined following [29] to be
the cost of an Opera “port” (consisting of a ToR port, op-
tical transceiver, fiber, and circuit switch port) divided by
the cost of a static network “port” (consisting of a ToR port,
optical transceiver, and fiber). A full description of this cost-
normalization method is presented in Appendix [A] If o > 1
(i.e. circuit switch ports are not free) then a cost-equivalent
static network can use the extra capital to purchase more
packet switches and increase its aggregate capacity.

10

We evaluated three workloads using the htsim simula-
tor: (1) hot rack, which represents a highly skewed work-
load where one rack communicates with one other rack; (2)
skew[0.2,1], in which 20% of racks are active (as defined
in [29]); and (3) host permutation, in which each host sends
to one other non-rack-local host. For each workload we
considered a range of relative Opera port costs (reallocating
any resulting cost savings in the static networks to increase
their capacity). We considered both k = 12 and k = 24 ToR
radices, corresponding to 648-host and 5,184-host networks.
Figure [];2] shows the results for k = 24; the k = 12 case has
nearly identical performance-cost scaling and is presented in
Appendix [C] along with a path length scaling analysis.

The throughput of the folded Clos topology is inde-
pendent of traffic pattern, whereas the throughput of the
expander topology decreases as workloads become less
skewed. Opera’s throughput initially decreases with a de-
crease in skew, then increases as the traffic becomes more
uniform. As long as o < 1.8 (Operas circuit switch ports
costs less than a packet switch port populated with an optical
transceiver), Opera delivers higher throughputs than either
an expander or folded Clos for permutation traffic and mod-
erately skewed traffic (e.g. 20% of racks communicating). In
the case of a single hot rack, Opera offers comperable perfor-
mance to a static expander. In the case of shuffle (all-to-all)
traffic, Opera delivers 2x higher throughput than either the
expander or folded Clos even for o = 2.

Opera does not offer an advantage for skewed and permu-
tation workloads when the relative cost of its ports is signif-
icantly higher than packet switches (@ > 2), or in deploy-
ments where more than 10% of the link rate is devoted to
urgent, delay-intolerant traffic, as described in Section@

6 Prototype

Priority queueing plays an important role in Opera’s de-
sign, ensuring that low-latency packets do not get buffered
behind bulk packets in the end hosts and switches, and
our simulation study reflects this design. In a real system,

I
[N}

o
N}

g —&—Worst slice ﬁ —&—Worst slice g —&—Worst slice
;0.15 ——o—Across all slices ;0.15 ——6—Across all slices ;0.75 —b— Across all slices
3 3 =
g 01 g 01 g 05
g g g
c 0.05 c 0.05 c0.25
S S S
O O O
— 00— a4 & 0¥ 0 < ¢
1% 2.5% 5% 10% 20% 40% 1% 2.5% 5% 10% 20% 40% 1% 2.5% 5% 10% 20% 50%
Links failed ToRs failed Circuit switches failed

Figure 11: Fault tolerance in a 648-host, 108-rack Opera network with 6 circuit switches and £ = 12 port ToRs. Connectivity
loss is the fraction of disconnected ToR pairs. In cases involving ToR failures, connectivity loss refers to non-failed ToRs.

1 o= 1
3 0.75 3 0.75
= = _
2 05 2 o05f .
o S r
i 025 o | E0
O folded Clos 0
1 1.25 1.5 1.75 2 1 1.25
«

1.5

1
=== 2075
e
2 05
o
£ 0.25
0
175 2 1 125 15 175 2
(674

Figure 12: Throughput for (left) hotrack, (center) skew[0.2,1], and (right) permutation workloads for k = 24 ports.

low-latency packets that arrive at a switch might temporar-
ily buffer behind lower-priority bulk packets that are being
transmitted out an egress port. To better understand the im-
pact of this effect on the end-to-end latency of Opera, we
built a small-scale hardware prototype.

The prototype consists of eight ToR switches, each with
four uplinks connected to one of four emulated circuit
switches (the same topology shown in Figure [5). All eight
ToR and four circuit switches are implemented as virtual
switches within a single physical 6.5-Tb/s Barefoot Tofino
switch. We wrote a P4 program to emulate the circuit
switches, which forward bulk packets arriving at an ingress
port based on a state register, regardless of the destination
address of the packet. We connect the virtual ToR switches
to the four virtual circuit switches using eight physical 100-
Gb/s cables in loopback mode (logically partitioned into 32
10-Gb/s links). Each virtual ToR switch is connected via
a cable to one attached end host, which hosts a Mellanox
ConnectX-5 NIC. There are eight such end hosts (one per
ToR switch) each configured to run at 10 Gb/s.

An attached control server periodically sends a packet to
the Tofino’s ASIC that updates the switch’s state register.
After configuring this register, the controller sends RDMA
messages to each of the attached hosts, signaling that one
of the emulated circuit switches has reconfigured. The end
hosts run two processes: an MPI-based shuffle program
patterned on the all-to-all Hadoop workload, and a simple
“ping-pong” application that sends low-latency RDMA mes-
sages to a randomly selected receiver, which simply returns a
response back to the sender. The relatively low sending rate
of the ping-pong application did not require us to implement
NDP for this traffic.

11

1
0.8
u 0.6
[a)]
(®) 04+
0.2 — Without bulk traffic |
—With bulk traffic
0 ! I I I
0 10 20 30 40
RTT (us)

Figure 13: RTT values for low-latency traffic with and with-
out bulk background traffic in the prototype.

6.1 End-to-end latency

Figure [13|shows the observed application-level latency of
sending a ping message from a random source to a random
destination (and back). We plot this distribution both with
and without bulk background traffic. The latency observed
without bulk traffic is due to a combination of the path length
and the time to forward a packet through Tofino’s P4 pro-
gram, which we observe to be about 3 s per hop, resulting
in latency of up to 9 us depending on path length. The ob-
served tail is due to RoCE/MPI variance at the end hosts.
In the presence of bulk traffic, low-latency packets poten-
tially need to queue behind bulk packets currently being sent
from the egress port. Because we emulate circuit switches
within the Barefoot switch, each transit of a circuit-switch
introduces additional latency that would not be present in a
deployment, adding additional latency. For our testbed there
are as many as eight serialization points from source to des-
tination, or 16 for each ping-pong exchange. Each serializa-
tion point can introduce as much as 1.2 ps (one MTU at 10
Gb/s), or 19.2 ps in total, as shown in Figure The dis-

#Racks | #Entries | % Utilization
108 12,096 0.7
252 65,268 3.8
520 276,120 16.2
768 600,576 35.3
1008 1,032,192 60.7
1200 1,461,600 85.9

Table 1: Number of entries and resulting resource utilization
for Opera rulesets for datacenters of varying sizes.

tribution is smooth because when low-latency packets buffer
behind bulk packets currently exiting the switch, the amount
of remaining time is effectively a random variable.

6.2 Routing state scalability

Opera requires more routing state than a static topology.
A straightforward implementation would require the tables
in each switch to contain O(chk)2 entries as there are N,
topology slices and N, — 1 possible destinations within
each slice. We use Barefoot’s Capilano compiler tool to mea-
sure the size of the ruleset for various datacenter sizes, and
compare that size to the capacity of the Tofino 65x100GE
switch. The ruleset consists of both bulk and low-latency
non-rack-local rules. The resulting number of rules and the
percent utilization of the switch’s memory are shown in Ta-
ble[I} Because the practical rulesize limit may be lower than
the compiler-predicted size due to hash collisions within the
switch, we loaded the generated rules into a physical switch
to validate that the rules would fit into the resource con-
straints. These results show that today’s hardware is capable
of holding the rules needed to implement Opera, while also
leaving spare capacity for additional non-Opera rules.

7 Related work

Opera builds upon previous network designs focused on
cluster and low-latency environments. In addition to the
folded-Clos and expander graph topologies described thus
far, a number of additional static and dynamic network
topologies have been proposed for clusters and datacenters.

Static topologies: Dragonfly [30] and SlimFly [8] topolo-
gies connect localized pools of high cross-section band-
width with a sparse inter-cluster set of links, and have been
adopted in HPC environments. Diamond [12] and Wave-
Cube [9] statically interconnect switches with optical wave-
length MUXes, resulting in a connected topology without re-
configuration. Quartz [32] interconnects switches into rings,
and relies on multi-hop forwarding for low-latency traffic.

Dynamic topologies: Several dynamic network topolo-
gies have been proposed, which we can group into two cat-
egories: those that cannot support low-latency traffic and
those that can. In the former case, Helios [16], Mor-
dia [38], and C-Through [44] aim to reactively establish

12

high-bandwidth connections in response to observed traffic
patterns; they all rely on a separate packet-switched network
to support low-latency traffic. RotorNet [34] relies on de-
terministic reconfiguration to deliver constant bandwidth be-
tween all endpoints, and then relies on endpoints injecting
traffic using Valiant load balancing to support skewed traf-
fic. RotorNet requires a separate packet-switched network
for low latency traffic.

ProjecToR [20], on the other hand, always maintains a
“base mesh” of connected links that can handle low-latency
traffic while it opportunistically reconfigures free-space links
in response to changes in traffic patterns. The authors ini-
tially evaluated the use of a random base network, ruling
it out due to poor support of skew. Instead, they propose
a weighted matching of sources and sinks, though it is not
clear what the expected diameter of that network would be
in general. Like ProjecToR, Opera maintains an “always on”
base network which consists of a repeating sequence of time-
varying expander graphs, which has a well-known structure
and performance characteristics.

There are also reconfigurable network proposals that rely
on multi-hop indirection to support low-latency traffic. In
OSA [10]], during reconfiguration some end-to-end paths
may not be available, and so some circuit-switch ports can be
reserved specifically to ensure connectivity for low-latency
traffic. Megaswitch [11] could potentially support low-
latency traffic in a similar manner.

8 Conclusions

Static topologies such as oversubscribed folded-Clos and
expander graphs support low-latency traffic but have lim-
ited overall network bandwidth. Recently proposed dynamic
topologies provide high bandwidth, but cannot support low-
latency traffic. In this paper, we propose Opera, which is a
topology that implements a series of time-varying expander
graphs that support low-latency traffic, and when integrated
over time, provide direct connections between all endpoints
to deliver high throughput to bulk traffic. Opera can deliver
a4x increase in throughput for shuffle workloads and a 60%
increase in supported load for skewed datacenter workloads
compared to cost-equivalent static networks, all without ad-
versely impacting the flow completion times of short flows.

References

[1] IEEE standard for a precision clock synchronization
protocol for networked measurement and control sys-
tems. IEEE Std 1588-2008 (Revision of IEEE Std 1588-
2002), pages 1-300, July 2008.

[2] Mohammad Al-Fares, Alex Loukissas, and Amin Vah-
dat. A scalable, commodity, data center network archi-
tecture. In Proceedings of the ACM SIGCOMM Con-
ference, Seattle, WA, August 2008.

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

Mohammad Al-Fares, Sivasankar Radhakrishnan,
Barath Raghavan, Nelson Huang, and Amin Vahdat.
Hedera: Dynamic Flow Scheduling for Data Center
Networks. In Proceedings of the 7th ACM/USENIX
Symposium on Networked Systems Design and Imple-
mentation (NSDI), San Jose, CA, April 2010.

Mohammad Alizadeh, Albert Greenberg, David A.
Maltz, Jitendra Padhye, Parveen Patel, Balaji Prab-
hakar, Sudipta Sengupta, and Murari Sridharan. Data
center TCP (DCTCP). In Proceedings of the ACM SIG-
COMM Conference, pages 63—74, New Delhi, India,
2010.

Mohammad Alizadeh, Abdul Kabbani, Tom Edsall,
Balaji Prabhakar, Amin Vahdat, and Masato Yasuda.
Less is more: Trading a little bandwidth for ultra-
low latency in the data center. In Proceedings of the
9th USENIX Conference on Networked Systems Design
and Implementation, pages 19-19, San Jose, CA, 2012.

N Alon. Eigen values and expanders. Combinatorica,
6(2):83-96, January 1986.

Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian,
and Hao Wang. Information-agnostic flow scheduling
for commodity data centers. In 12th USENIX Sympo-
sium on Networked Systems Design and Implementa-
tion, pages 455-468, Oakland, CA, 2015.

Maciej Besta and Torsten Hoefler. Slim fly: A cost ef-
fective low-diameter network topology. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
348-359, New Orleans, Louisana, 2014.

K. Chen, X. Wen, X. Ma, Y. Chen, Y. Xia, C. Hu,
and Q. Dong. Wavecube: A scalable, fault-tolerant,
high-performance optical data center architecture. In

IEEE Conference on Computer Communications (IN-
FOCOM), pages 1903-1911, April 2015.

Kai Chen, Ankit Singlay, Atul Singhz, Kishore Ra-
machandranz, Lei Xuz, Yueping Zhangz, Xitao Wen,
and Yan Chen. OSA: An optical switching architecture
for data center networks with unprecedented flexibil-
ity. In Proceedings of the 9th USENIX Conference on
Networked Systems Design and Implementation, pages
18-18, San Jose, CA, 2012.

Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George
Porter, Chunming Qiao, and Shan Zhong. Enabling
wide-spread communications on optical fabric with
MegaSwitch. In /4th USENIX Symposium on Net-
worked Systems Design and Implementation, pages
577-593, Boston, MA, 2017.

13

[12]

(13]

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

Yong Cui, Shihan Xiao, Xin Wang, Zhenjie Yang, Chao
Zhu, Xiangyang Li, Liu Yang, and Ning Ge. Diamond:
Nesting the data center network with wireless rings in
3D space. In 13th USENIX Symposium on Networked
Systems Design and Implementation, pages 657-669,
Santa Clara, CA, 2016.

Jeffrey Dean and Sanjay Ghemawat. MapReduce: Sim-
plified data processing on large clusters. In Proceed-
ings of the 6th Conference on Symposium on Opeart-
ing Systems Design & Implementation, pages 10-10,
San Francisco, CA, 2004.

Nandita Dukkipati and Nick McKeown. Why flow-
completion time is the right metric for congestion con-
trol. SIGCOMM Comput. Commun. Rev., 36(1):59-62,
January 2006.

Facebook. Facebook’s fabric topology.

https://code.facebook.com/posts/360346274145943/introducing-

data-center-fabric-the-next-generation-facebook-data-
center-network/, 2018.

Nathan Farrington, George Porter, Sivasankar Rad-
hakrishnan, Hamid Bazzaz, Vikram Subramanya,
Yeshaiahu Fainman, George Papen, and Amin Vah-
dat. Helios: A hybrid electrical/optical switch archi-
tecture for modular data centers. In Proceedings of the
ACM SIGCOMM Conference, New Delhi, India, Au-
gust 2010.

Joseph E. Ford, Yeshayahu Fainman, and Sing H. Lee.
Reconfigurable array interconnection by photorefrac-
tive correlation. Appl. Opt., 33(23):5363-5377, Aug
1994.

The Apache Software Foundation.
https://hadoop.apache.org/, 2018.

Apache Hadoop.

Peter X. Gao, Akshay Narayan, Gautam Kumar,
Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
pHost: Distributed near-optimal datacenter transport
over commodity network fabric. In Proceedings of the
11th ACM Conference on Emerging Networking Exper-
iments and Technologies, pages 1:1-1:12, Heidelberg,
Germany, 2015.

Monia Ghobadi, Ratul Mahajan, Amar Phanishayee,
Nikhil Devanur, Janardhan Kulkarni, Gireeja Ranade,
Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. ProjecToR:
Agile reconfigurable data center interconnect. In
Proceedings of the ACM SIGCOMM Conference,
pages 216-229, Florianopolis, Brazil, 2016.

Albert Greenberg, James R. Hamilton, Navendu Jain,
Srikanth Kandula, Changhoon Kim, Parantap Labhiri,

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

David A. Maltz, Parveen Patel, and Sudipta Sengupta.
VL2: A scalable and flexible data center network. In
Proceedings of the ACM SIGCOMM Conference on
Data Communication, pages 51-62, Barcelona, Spain,
2009.

Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog,
Robert N. M. Watson, Andrew W. Moore, Steven Hand,
and Jon Crowcroft. Queues don’t matter when you can
jump them! In Proceedings of the 12th USENIX Con-
ference on Networked Systems Design and Implemen-
tation, pages 1-14, Oakland, CA, 2015.

Navid Hamedazimi, Zafar Qazi, Himanshu Gupta,
Vyas Sekar, Samir R. Das, Jon P. Longtin, Himanshu
Shah, and Ashish Tanwer. Firefly: A reconfigurable
wireless data center fabric using free-space optics. In
Proceedings of the ACM Conference on SIGCOMM,
pages 319-330, Chicago, Illinois, USA, 2014.

Mark Handley, Costin Raiciu, Alexandru Agache, An-
drei Voinescu, Andrew W. Moore, Gianni Antichi, and
Marcin Wéjcik. Re-architecting datacenter networks
and stacks for low latency and high performance. In
Proceedings of the Conference of the ACM Special In-
terest Group on Data Communication, pages 29-42,
Los Angeles, CA, USA, 2017.

Shlomo Hoory, Nathan Linial, and Avi Wigderson. Ex-
pander graphs and their applications. BULL. AMER.
MATH. SOC., 43(4):439-561, 2006.

Ht-sim. The htsim simulator. https://github.com/
nets-cs-pub-ro/NDP/wiki/NDP-Simulator,
2018.

Sangeetha Abdu Jyothi, Ankit Singla, P. Brighten God-
frey, and Alexandra Kolla. Measuring and understand-
ing throughput of network topologies. In Proceedings
of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages
65:1-65:12, Salt Lake City, Utah, 2016.

Srikanth Kandula, Jitendra Padhye, and Paramvir Bahl.
Flyways to de-congest data center networks. In Pro-
ceedings of the 8th ACM Workshop on Hot Topics in
Networks (HotNets-VIII), New York City, NY, October
2009.

Simon Kassing, Asaf Valadarsky, Gal Shahaf, Michael
Schapira, and Ankit Singla. Beyond fat-trees without
antennae, mirrors, and disco-balls. In Proceedings of
the Conference of the ACM Special Interest Group on
Data Communication, pages 281-294, Los Angeles,
CA, USA, 2017.

14

(30]

[31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

John Kim, Wiliam J. Dally, Steve Scott, and Dennis
Abts. Technology-driven, highly-scalable dragonfly
topology. In Proceedings of the 35th Annual Inter-
national Symposium on Computer Architecture, pages
77-88, Beijing, China, 2008.

He Liu, Feng Lu, Alex Forencich, Rishi Kapoor,
Malveeka Tewari, Geoffrey M. Voelker, George Papen,
Alex C. Snoeren, and George Porter. Circuit Switching
Under the Radar with REACToR. In Proceedings of
the 11th ACM/USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI), pages 1-15,
Seattle, WA, April 2014.

Yunpeng James Liu, Peter Xiang Gao, Bernard Wong,
and Srinivasan Keshav. Quartz: A new design element
for low-latency DCNs. In Proceedings of the ACM
Conference on SIGCOMM, pages 283-294, Chicago,
Illinois, USA, 2014.

W. M. Mellette, G. M. Schuster, G. Porter, G. Papen,
andJ. E. Ford. A scalable, partially configurable optical
switch for data center networks. Journal of Lightwave
Technology, 35(2):136-144, Jan 2017.

William M. Mellette, Rob McGuinness, Arjun Roy,
Alex Forencich, George Papen, Alex C. Snoeren, and
George Porter. RotorNet: a scalable, low-complexity,
optical datacenter network. In Proceedings of the ACM
SIGCOMM Conference, Los Angeles, California, Au-
gust 2017.

William M. Mellette, Alex C. Snoeren, and George
Porter. P-FatTree: A multi-channel datacenter network
topology. In Proceedings of the 15th ACM Workshop
on Hot Topics in Networks (HotNets-XV), Atlanta, GA,
November 2016.

Behnam Montazeri, Yilong Li, Mohammad Alizadeh,
and John Ousterhout. Homa: A receiver-driven low-
latency transport protocol using network priorities. In
Proceedings of the Conference of the ACM Special In-
terest Group on Data Communication, pages 221-235,
Budapest, Hungary, 2018.

Radhika Niranjan Mysore, Andreas Pamboris, Nathan
Farrington, Nelson Huang, Pardis Miri, Sivasankar
Radhakrishnan, Vikram Subramanya, and Amin Vah-
dat. Portland: A scalable fault-tolerant layer 2 data
center network fabric. In Proceedings of the ACM SIG-
COMM Conference on Data Communication, pages
39-50, Barcelona, Spain, 2009.

George Porter, Richard Strong, Nathan Farrington,
Alex Forencich, Pang-Chen Sun, Tajana Rosing,
Yeshaiahu Fainman, George Papen, and Amin Vahdat.
Integrating microsecond circuit switching into the data

https://github.com/nets-cs-pub-ro/NDP/wiki/NDP-Simulator
https://github.com/nets-cs-pub-ro/NDP/wiki/NDP-Simulator

[39]

[40]

[41]

[42]

[43]

[44]

[45]

center. In Proceedings of the ACM SIGCOMM Confer-
ence, Hong Kong, China, August 2013.

Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George
Porter, and Alex C. Snoeren. Inside the social net-
work’s (datacenter) network. In Proceedings of the
ACM SIGCOMM Conference, London, England, Au-
gust 2015.

Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani,
Paolo Costa, Ki Suh Lee, Han Wang, Rachit Agarwal,
and Hakim Weatherspoon. Shoal: A lossless network
for high-density and disaggregated racks. Technical re-
port, Cornell, https://hdl.handle.net/1813/49647, 2017.

Arjun Singh, Joon Ong, Amit Agarwal, Glen Ander-
son, Ashby Armistead, Roy Bannon, Seb Boving, Gau-
rav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda,
Jim Wanderer, Urs Holzle, Stephen Stuart, and Amin
Vahdat. Jupiter rising: A decade of clos topologies and
centralized control in google’s datacenter network. In
Proceedings of the ACM Conference on Special Interest
Group on Data Communication, pages 183—-197, Lon-
don, United Kingdom, 2015.

Ankit Singla, Chi-Yao Hong, Lucian Popa, and
P. Brighten Godfrey. Jellyfish: Networking data cen-
ters randomly. In Proceedings of the 9th USENIX Con-
ference on Networked Systems Design and Implemen-
tation, pages 17-17, San Jose, CA, 2012.

Asaf Valadarsky, Gal Shahaf, Michael Dinitz, and
Michael Schapira. Xpander: Towards optimal-
performance datacenters. In Proceedings of the 12th
International on Conference on Emerging Networking
EXperiments and Technologies, pages 205-219, Irvine,
California, USA, 2016.

Guohui Wang, David G. Andersen, Michael Kaminsky,
Konstantina Papagiannaki, T.S. Eugene Ng, Michael
Kozuch, and Michael Ryan. c-through: Part-time op-
tics in data centers. In Proceedings of the ACM SIG-
COMM Conference, pages 327-338, New Delhi, India,
2010.

Xia Zhou, Zengbin Zhang, Yibo Zhu, Yubo Li, Saipriya
Kumar, Amin Vahdat, Ben Y. Zhao, and Haitao Zheng.
Mirror mirror on the ceiling: Flexible wireless links
for data centers. In Proceedings of the ACM SIG-
COMM Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communica-
tion, pages 443-454, Helsinki, Finland, 2012.

15

Appendix

A Cost-normalization approach

In this section, we detail the method we used to analyze
arange of cost-equivalent network topologies at various net-
work scales and technology cost points. We begin by defin-
ing o as the cost of an Opera “port” (consisting of a ToR port,
optical transceiver, fiber, and circuit switch port) divided by
the cost of a static network “port” (consisting of a ToR port,
optical transceiver, and fiber), following [29].

We can also interpret ¢ as the cost of the “core” ports
(i.e. upward-facing ToR ports and above) per edge port (i.e.
server-facing ToR port). Core ports drive the network cost
because they require optical transceivers. Thus, for a folded
Clos we can write oo = 2(T — 1)/F (where T is the number
of tiers and F is the oversubscription factor). For a static
expander, we can write o = u/(k— u) (where u is the number
of ToR uplinks and £ is the ToR radix).

We use a T = 3 three tier (i.e. three layer) folded Clos as
the normalizing basis and keep the packet switch radix (k)
and number of hosts (H) constant for each point of network
comparison. To determine the number of hosts as a function
of k and a, we first solve the for the oversubscription factor
as a function of o: F =2(T — 1)/ (note T = 3). Then,
we find the number of hosts H in a folded Clos as a function
of F, k, and a: H = (4F /(F +1))(k/2)T (note T = 3, and
F is a function of). This allows us to compare networks
for various values of k and o, but we also estimate @ given
technology assumptions described below.

Opera’s cost hinges largely on the circuit switching tech-
nology used. While a wide variety of technologies could be
used in principle, using optical rotor switches [34] is likely
the most cost-effective because (1) they provide low optical
signal attenuation (about 3 dB) [33], and (2) they are com-
patible with either single mode or multimode signaling by
virtue of their imaging-relay-based design [33]]. These fac-
tors mean that Opera can use the same (cost) multimode or
simglemode transceivers used in traditional networks, unlike
many other optical network proposals that require expen-
sive and sophisticated telecom grade gear such as wavelength
tunable transceivers or optical amplifiers. Based on the cost
estimates of commodity components taken from [29]] and ro-
tor switch components (summarized in Table[2), we approx-
imate that an Opera port costs about 1.3 x more than a static
network port (i.e. a=1.3).

B Reducing cycle time at scale

Larger Opera networks are enabled by higher radix ToR
switches, which commensurately increase the number of
circuit switches. To prevent the cycle time from scaling
quadratically with the ToR radix, we allow multiple circuit
switches to reconfigure simultaneously (ensuring that the re-
maining switches deliver a fully-connected network at all
times). As an example, doubling the ToR radix doubles
the number of circuit switches, but presents the opportunity

Component Static Opera
SR transceiver $80 $80
Optical fiber ($0.3/m) $45 $45
ToR port $90 $90
Optical fiber array - $30 §
Optical lenses - $15 7
Beam-steering element - $5 7
Optical mapping - $10 7
Total $215 $275
o ratio 1 1.3

Table 2: Cost per “port” for a static network vs. Opera. A
“port” in a static network consists of a packet switch port,
optical transceiver, and fiber. A “port” in Opera consists of
a packet switched (ToR) port, optical transceiver, and fiber,
as well as the components needed to build a rotor switch.
The cost of rotor switch components is amortized across the
number of ports on a given rotor switch, which can be 100s
or 1,000s; we present values in the table assuming 512 port
rotor switches. (f per duplex fiber port)

o 30 T
|
£ 25 |~ ~ “No groups PR
; —— 6 circuit switches per group e
= 20r -
3} PR
) 15+ _-7
o .-
2 10r _-- 1
[-
o 5 W
m O L L L L
12 24 36 48 60

ToR radix (k)

Figure 14: Relative cycle time is improved at larger scale by
grouping circuit switches and allowing one switch in each
group to reconfigure simultaneously.

16

to cut the cycle time in half by reconfiguring two circuit
switches at a time. This approach offers linear scaling in
the cycle time with the ToR radix, as shown in Figure
Assuming we divide circuit switches into groups of 6, paral-
lelizing the cycle of each group, the cycle time increases by
a factor of 6 from a k = 12 (648-host network) to a k = 64
(98,304-host network), corresponding to a flow length cutoff
for “bulk” flows of 90 MB in the latter case.

C Additional scaling analysis

Figure [15| shows the performance-cost scaling trends for
various traffic patterns for networks with k = 12 port ToRs.
Comparing with Figure [I2] we observed nearly indentical
performance between networks with k = 12 and k = 24, indi-
cating the (cost-normalized) network performance is nearly
independent of scale for all networks considered (folded
Clos, static expanders, and Opera).

To analyze this result at a more fundamental level, we
evaluated the average and worst-case path lengths for ToR
radices between k = 12 and k = 48 for both Opera and static
expanders at various cost points (¢¢). Figure [16|shows that
the average path lengths converge for large network sizes
(the worst-case path length for all networks including Opera
was 4 ToR-to-ToR hops for k =24 and above). Given that the
network performance properties of static expanders are cor-
related with their path length properties [6], Figure [16|sup-
ports our observation that the cost-performance properties of
the networks do not change substantially with network size.

D Spectral efficiency and path lengths

The spectral gap of a network is a graph-theoretic met-
ric indicating how close a graph is to an optimal Ramanu-
jan expander [25]. Larger spectral gaps imply better expan-
sion. We evaluated the spectral gap for each the 108 topol-
ogy slices in the example 648-host 108-rack Opera network
analyzed in the text, and compared it to the spectral gaps of
a number or randomly-generated static expanders with vary-
ing d:u ratios. All networks used k = 12 radix ToRs and were
constrained to have a nearly-equal number of hosts. The re-
sults are shown in Figure[I7] Note that expanders with larger
u require more ToR switches (i.e., cost more) to support the
same number of hosts.

Interestingly, when the number of hosts is held constant,
we observe that the average and worst-case path length is
not a strong function of the spectral gap. Further, we see
that Opera comes very close to the best average path length
achievable with a static expander, indicating that it makes
good use of the ToR uplinks in each topology slice. Opera
achieves this good performance despite the fact that we have
imposed additional constraints to support bulk traffic with
low bandwidth tax: unlike a static expander, Opera must pro-
vide a set of N,4s = 108 expanders across time, and those
expanders are constructed from an underlying set of disjoint
matchings.

1 ——— 1
3075 2075
= <
2 05 S o05f .-~
S o
|E 025 —-—--Sf:ar:der |E 025
O folded Clos 0
1 125 15 175 2 1 1.25
(673

1 T
—- - (mmreeeees Opera all-to-all)
o 3 0.75
ey
2 05 -
R
= 025 .--="=
0
1.75 2 1 1.25 1.5 1.75 2
(e

Figure 15: Throughput for (left) hotrack, (center) skew[0.2,1], and (right) permutation workloads for k = 24 ports.

—6—Opera
—o—expander o = 1
—¥—expander a = 1.4/
expander o = 2
—>—expander o = 3

Avg. path length
w

48
ToR radix (k)

Figure 16: Path lengths for different network sizes (from
k = 12 with = 650 hosts to k = 48 with =~ 98,000 hosts) and
relative cost assumptions ().

6 T T T
Opera
P! % Worst-cases
5 ra— O Averages |4
S 4t * * *
2
Q
-3 C_
= o o o
©
R R R
Static Static Static Static
1+ u=5 u==6 u=7 u=28
0 | | | |
0.5 1 15 2 25 3

Spectral Gap

Figure 17: Average and worst-case path lengths and spectral
gap for Opera and static expander networks. All networks
use k = 12-port ToR switches and have between 644 and 650
hosts. Each data point for Opera corresponds to one of its
108 topology slices.

17

E Additional failure analysis

Opera recomputes paths to route around failed links,
ToRs, and circuit switches, and in general these paths will
be longer than those under zero failures. Figure [I§] shows
the correlation between the degree of each type of failure
and the average and maximum path length (taken across all
topology slices).

For reference, we also analyzed the fault tolerance prop-
erties of the 3:1 folded Clos and u = 7 expander discussed
in the paper. Figure [I9] shows the results for the 3:1 Clos
and Figure 20| shows results for the u = 7 expander. We note
that Opera has better fault tolerance properties than the 3:1
folded Clos, but the u = 7 expander is better yet. This is not
surprising considering the u = 7 expander has significantly
more links and switches, as well as higher fanout at each
ToR.

n 15 T » 15 T
8‘ —e— Average g— —e— Average
< —6—Worst case < —6—Worst case
x 10 1 x 10
=] =]
iy gy
g5 _ o—e—eo 25
o ©
=] <]
F 0 = 0
1% 2.5% 5% 10% 20% 40% 1% 2.5%
Links failed

Figure 18: Average and worst-case path length of a 108-rack Opera network with 6 circuit switches and k = 12 port ToRs,
for various failure conditions. Path length is reported for all finite-length paths. Figure [IT]indicates how many ToR-pairs are

disconnected (i.e. have infinite path length).

Figure 19: Connectivity loss and impact on path lengths in the 3:1 folded Clos for link failures (top two) and ToR failures

(bottom two).

Figure 20: Connectivity loss and impact on path lengths in the u = 7 expander for link failures (top two) and ToR failures

(bottom two).

5%
ToRs failed

10%

@ T
% —e— Average
< —o— Worst case
x 10+
)
iy
2 s5¢f
" g
= 0
20% 40% 1% 2.5% 5% 10% 20% 40%

Circuit switches failed

—6— Average
——6— Worst case

—6— Worst case

——————0—6—0—0-0-0-06—0—0—0=8-4
1% 2.5% 5% 10% 20% 40%
Links failed
—6— Average

0.2 T T T T 15
— 0.15 1 =
2 x 10
= , o
3 0.1 =
e 25
€ 0.05 E &
8 S
0 0
1% 25% 5% 10% 20% 40%
Links failed
0.2 15
Lo1s 1 2
2 x 10
=] ©
3 0.1 =
2 2 s
c 0.05 1 o
<]
U O f L L '_
1% 2.5% 5% 10% 20% 40%

Switches failed

1% 2.5% 5%

10%

20% 40%

Switches failed

w 02 : : : : w157 - : : :
2 g —e— Average
;0.15 1 < —o— Worst case
ES) x 10
= 1 o
2 01 © M—e"
@ S 5 N
c = v M
005 1 x oot
o o oot = 0
1% 2.5% 5% 10% 20% 40% 1% 2.5% 5% 10% 20% 40%
Links failed Links failed
» 02 » 156
4 8— —e— Average
— 0.15 1 = ——
> < 10 Worst case
= | o
g 01 iy .//
o 25 0000 ¢
£0.05 1 e oot
© s = ‘ ‘ ‘ ‘ ‘
1% 25% 5% 10% 20% 40% 1% 25% 5% 10% 20% 40%
ToRs failed ToRs failed

18

	1 Introduction
	2 Network efficiency
	2.1 Workload properties
	2.2 The ``big switch'' abstraction
	2.3 Reduced capacity networks

	3 Design
	3.1 Overview
	3.1.1 Eliminating reconfiguration disruptions
	3.1.2 Ensuring good expansion

	3.2 Example
	3.3 Topology generation
	3.4 Forwarding
	3.5 Synchronization
	3.6 Practical considerations
	3.6.1 Cabling and switch complexity
	3.6.2 Fault tolerance

	4 Implementation
	4.1 Defining bulk and low-latency traffic
	4.2 Transport protocols
	4.2.1 Low-latency transport
	4.2.2 Bulk transport

	4.3 Packet forwarding

	5 Evaluation
	5.1 Real-world traffic
	5.2 Bulk traffic
	5.3 Only low-latency flows
	5.4 Mixed traffic
	5.5 Fault tolerance
	5.6 Network scale and cost sensitivity

	6 Prototype
	6.1 End-to-end latency
	6.2 Routing state scalability

	7 Related work
	8 Conclusions
	A Cost-normalization approach
	B Reducing cycle time at scale
	C Additional scaling analysis
	D Spectral efficiency and path lengths
	E Additional failure analysis

