
RotorNet: A Scalable, Low-complexity,
Optical Datacenter Network

William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich,

George Papen, Alex C. Snoeren, and George Porter

University of California, San Diego

ABSTRACT
The ever-increasing bandwidth requirements of modern datacen-

ters have led researchers to propose networks based upon optical

circuit switches, but these proposals face significant deployment

challenges. In particular, previous proposals dynamically config-

ure circuit switches in response to changes in workload, requiring

network-wide demand estimation, centralized circuit assignment,

and tight time synchronization between various network elements—

resulting in a complex and unwieldy control plane. Moreover, limita-

tions in the technologies underlying the individual circuit switches

restrict both the rate at which they can be reconfigured and the

scale of the network that can be constructed.

We propose RotorNet, a circuit-based network design that ad-

dresses these two challenges. While RotorNet dynamically reconfig-

ures its constituent circuit switches, it decouples switch configura-

tion from traffic patterns, obviating the need for demand collection

and admitting a fully decentralized control plane. At the physical

layer, RotorNet relaxes the requirements on the underlying circuit

switches—in particular by not requiring individual switches to im-

plement a full crossbar—enabling them to scale to 1000s of ports.

We show that RotorNet outperforms comparably priced Fat Tree

topologies under a variety of workload conditions, including traces

taken from two commercial datacenters. We also demonstrate a

small-scale RotorNet operating in practice on an eight-node testbed.

CCS CONCEPTS
• Networks→ Network architectures;

KEYWORDS
Datacenter, optical switching

ACM Reference format:
William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George

Papen, Alex C. Snoeren, and George Porter. 2017. RotorNet: A Scalable,

Low-complexity, Optical Datacenter Network. In Proceedings of SIGCOMM
’17, Los Angeles, CA, USA, August 21-25, 2017, 14 pages.
https://doi.org/10.1145/3098822.3098838

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4653-5/17/08. . . $15.00

https://doi.org/10.1145/3098822.3098838

1 INTRODUCTION
Modern datacenter networks rely heavily on fiber-optic links to

meet bandwidth demands [10, 29]. To avoid the expensive optical-

electrical-optical (OEO) conversion necessary to connect such links

with power-hungry electrical packet switches, researchers have

proposed network architectures that switch much of a datacenter’s

traffic passively [1, 6, 13, 15, 17, 20, 26, 32] using optical circuit

switches (OCSes). OCSes can support very high link bandwidths

at low per-bit cost and power because they passively redirect light

from one port to another, independent of data rate. Yet despite

these alluring properties, optical circuit switching faces two major

barriers to wide-scale adoption in the datacenter environment.

The first barrier to deployment is the attendant control plane.

Existing proposals to employ OCSes in the datacenter reconfigure

optical circuits in response to traffic demands. Such reconfiguration

requires collecting network-wide demand information [20, 26, 32]

in order to compute a schedule of switch configurations [4, 21], rate-

limiting packet transmissions [4, 20, 21, 26], and synchronizing the

OCSes with each other, the scheduler, and the endpoints [20]. This

tight coupling among the various network components presents

a significant challenge at scale. In this paper, we propose an OCS-

based topology that has a fully decentralized control plane aimed

at maximizing network throughput.

The second issue with employing commercial OCS devices in

datacenters is their limited scalability, specifically their low port

count (radix) and slow reconfiguration speed. Previous work [24]

showed that MEMS-based optical switches can reconfigure quickly

(e.g., in 10s of microseconds), or they can have a high port count

(e.g., O(100) ports), but not both. Fundamentally, this limitation

is imposed by the need to implement a full crossbar abstraction;

in other words, the requirement that a switch be able to forward

traffic between any two ports. While previous proposals rely upon

this full connectivity to construct network fabrics, we explore an

alternative design point that circumvents the fundamental scaling

limitations of MEMS-based crossbars.

We propose RotorNet, an OCS-based datacenter-wide network

fabric that overcomes these challenges by departing from prior

optical switching approaches in three distinct ways. First, RotorNet

does not reconfigure the optical switches to match network traffic

conditions. Instead, each switch independently rotates through a

fixed, static set of configurations that provide uniform bandwidth

between all endpoints. This design completely eliminates the need

for a centralized control plane—because round-robin switch sched-

uling does not require demand estimation, schedule computation,

or schedule distribution—yet delivers full bisection bandwidth for

uniform traffic.

https://doi.org/10.1145/3098822.3098838
https://doi.org/10.1145/3098822.3098838

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA W. M. Mellette et al.

Topology CP Structure CP Algorithm CP Goal CP Responds to Demand

c-Through [32] k (NR × NR) xbars Centralized Edmonds [9] Throughput maximization Yes

Helios [13] k (NR × NR) xbars Centralized Edmonds [9] Throughput maximization Yes

REACToR [20] k (NR × NR) xbars Centralized Solstice [22] Throughput maximization Yes

Firefly [17] k (NR × NR) xbars Centralized Blossom [9] Throughput maximization Yes

Mordia [26] k rings Centralized BvN [3, 31] Throughput maximization Yes

MegaSwitch [8] NR × k rings Centralized Edge coloring variant [7] Throughput maximization Yes

ProjecToR [15] 1 (kNR × kNR) xbar Distributed Stable-marriage variant [14] Starvation-free low latency Yes

RotorNet Nsw Rotor switches Distributed VLB variant [5, 30] Throughput maximization No

Table 1: A comparison of the control planes (CP) of previously proposed OCS-based topologies.

Of course, datacenter traffic is known to be far from uniform [27],

so RotorNet gives up at most a factor of two in link bandwidth—

which is ample in an optically switched network—to support arbi-

trary traffic patterns. We rely on a form of Valiant load balancing

(VLB) to send traffic through the fabric twice: first to an interme-

diate endpoint, and then once more to the ultimate destination.

We show that classic VLB can be modified to regain a significant

amount of bandwidth, meaning the factor-of-two reduction is a

worst-case, not common-case, trade off. Our design provides strictly

bounded delivery time and buffering while remaining robust to link

and switch failures. Compared to a 3:1 Fat Tree of approximately

equal cost, RotorNet delivers 1.6× the throughput under worst-case

traffic, 2.3× the throughput for reported datacenter traffic, and up

to 3× the throughput for uniform traffic.

Finally, RotorNet employs custom-designed OCSes that are tai-

lored to our need, namely rotating through a small fixed set of

configurations, which we call Rotor switches. Because of their sim-

plified internal design, Rotor switches can scale to 1000s of ports

with state-of-the-art reconfiguration speeds of O(10) µs. A network

of 128 Rotor switches can support 2,048 racks while remaining

practical to build and deploy. At this scale, RotorNet serves traffic

within O(1) ms, and admits a hybrid optical/electronic architecture

to extend support to traffic with lower latency requirements. We

evaluate RotorNet experimentally on a small-scale testbed complete

with a prototype Rotor switch and endpoints that implement our

VLB-inspired indirection protocol.

The contributions of this paper include: 1) a new design direction

for optically-switched networks that obviates closed-loop circuit

scheduling, 2) open-loop Rotor switches and a datacenter-wide

fabric, RotorNet, constructed from these switches, 3) an analysis

of RotorNet showing that it supports uniform traffic at full bisec-

tion bandwidth, worst-case (permutation) traffic at half bisection

bandwidth, and reported commercial datacenter traffic with 70–90%

of the bandwidth of an ideal Fat Tree network at lower cost, and

4) a demonstration and evaluation of RotorNet’s VLB-like routing

algorithm on prototype hardware.

Additional information on RotorNet can be found at http://www.

sysnet.ucsd.edu/circuit-switching.

2 BACKGROUND & RELATEDWORK
RotorNet builds upon a line of research integrating optical circuit

switching into datacenter networks. The physical-layer technolo-

gies employed by these approaches vary widely, with some using

fiber-coupled optical crossbar switches, others using WDM-based

Nsw packet switches

ToR 1 ToR 2 ToR 3 ToR 4

Rack 1 Rack 2 Rack 3 Rack 4 …

ToR NR

Rack NR

…

Nup = Nsw
uplinks

Figure 1: A traditional Clos-based network topology.

ring networks, and yet others using free-space optical transmit-

ters and receivers. Table 1 abstracts away these implementation

details and instead focuses on each proposal’s topology and control

plane. In all cases (save ProjecToR [15], which we discuss below),

each design tries to match the configuration of the network to

the current or future traffic demands to maximize overall network

throughput, requiring a complex datacenter-wide control plane

that is difficult to scale. To appreciate why such algorithms are

required, we briefly review throughput maximization in the context

of a single crossbar-based packet switch before describing previous

OCS-based proposals.

2.1 Packet-switched folded-Clos networks
Figure 1 depicts a traditional Clos-based network topology with a

single layer of core switches. Groups of servers are aggregated into

NR racks, and each server is connected to its local top-of-rack (ToR)

switch. In this example, each ToR has Nup = Nsw uplinks, each

connected to one of Nsw core switches. In general, ToR switches

are connected by a multi-stage network of homogeneous switches

which, taken together, logically act as a single, large crossbar switch.

To connect large numbers of racks with switches of moderate port

count (Nup ≪ NR), published production networks employ at least

three tiers of cascaded switches [10, 16, 29].

In a folded-Clos network fabric, end hosts are essentially decou-

pled from the packet switches forming the core of the network.

Servers can send data to any destination with the expectation that

the fabric will deliver that data without further communication

with the sender. Each packet switch has internal buffering to absorb

bursts, and a mechanism for conveying traffic through the switch

at line rate. The only signals a sender may receive that a switch is

under-provisioned are packet losses or ECN (Explicit Congestion

http://www.sysnet.ucsd.edu/circuit-switching
http://www.sysnet.ucsd.edu/circuit-switching

RotorNet: A Scalable, Low-complexity, Optical Datacenter Network SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Demand collection

N VoQs

. .

N Output ports

Electronic Packet Switch (EPS)

Sync.

Scheduling (iSLIP)

Crossbar

Demand collection

ToR

. .
 .

Datacenter network

Scheduling (Solstice / Eclipse)

ToR

ToR

Service
network

ToR

. . .

ToR

ToR

Crossbar

TDMA Sync.

N Receivers N Senders

(a) (b)

OCS

Figure 2: (a) An electronic packet switch encapsulates its control complexity within the switch itself. (b) Standard approaches
to optical circuit switching expose the control complexity to the overall network.

Notification) markings when the offered load to the switch exceeds

the capacity of one or more outgoing links; in such cases transport

protocols (such as TCP) reduce the sending rates to converge to an

admissible demand.

A textbook switch design model is a VoQ-scheduled crossbar,

shown in Figure 2(a). Packets arrive at N input ports (left), where

they are buffered in virtual output queues (VoQs). A scheduling

algorithm, such as iSLIP [23] or one of its many variants, examines

these queues and chooses the appropriate sequence of input-output

port matchings needed to convey packets to the N output ports

(right). Typically, the internal crossbar runs at some speed-up factor

relative to the external line rate to hide any overhead involved in the

internal processes. These processes, including demand collection

(i.e., VoQ depth analysis), scheduling (e.g., iSLIP), reconfiguration

(i.e., sequence of matchings), and synchronization (e.g., which VoQ

is polled during each matching), together comprise a control plane

that is implemented entirely within the switch, essentially hidden

from the rest of the network and the sender.

2.2 Circuit-switched network fabrics
Prior OCS-based proposals fundamentally change the nature of the

switch control plane. Proposals that dynamically reconfigure the

network topology in response to observed or predicted traffic in

order to maximize throughput must carry out the same tasks as the

electronic packet switch shown above. Yet, while packet switches

are able to hide their internal management processes inside discrete

boxes, previous OCS-based topologies, by virtue of their inability

to buffer and inspect packets, expose this control complexity to the

entire network, effectively turning the network fabric into a giant,

coupled crossbar. Figure 2(b) illustrates this distinction, depicting

the network-wide demand collection to a central point [13, 20, 26], a

centralized scheduling algorithm [4, 21], schedule distribution [20],

and network-wide synchronization [13, 20, 26, 32].

A recent free-space optical proposal, ProjecToR [15], sidesteps

this complexity by foregoing global throughput maximization, in-

steadminimizing latencywhile avoiding starvation. Each ProjecToR

switch has its own dedicated switching elements, allowing each

ToR to independently provision free-space links based on only that

ToR’s local demand. It remains only to ensure that multiple ToRs

do not choose free-space paths that conflict at a single receiver,

which would cause collisions. Thus, ProjecToR’s control plane is

inherently simpler than the other approaches in Table 1, and can

be implemented in a distributed way. However, the resulting de-

sign does not necessarily maximize network throughput. Moreover,

ProjecToR’s reliance on free-space optics raises a myriad of other

practical concerns (e.g., robustness to dust, vibration, etc.) that do

not arise in wired fiber-optic networks.

3 DESIGN OVERVIEW
Similar to prior proposals based on optical circuit switches, Rotor-

Net employs traditional, packet-switched ToR switches to connect

end hosts to the fabric. The ToRs are connected optically to a set of

custom OCSes, which we call Rotor switches, which collectively

provide connectivity to each of the other ToRs in the network.

If desired, ToRs can be further connected to an electrical packet-

switched fabric as well to form a hybrid network, but we defer

discussion for the time being to focus on the optical network. Im-

portantly, the set of Rotor switches does not provide continuous

connectivity between all pairs of ToRs; instead, they implement

a schedule of connectivity patterns that, in total, provides a di-

rect connection between any pair of ToRs within a specified time

interval.

3.1 Open-loop switching
Unlike prior optically-switched network proposals, the configura-

tion of the Rotor switches is not driven by network traffic condi-

tions, either locally or globally. In RotorNet, the Rotor switches

independently cycle through a fixed, pre-determined pattern of con-

nectivity in a round-robin manner, irrespective of instantaneous

traffic demands. We choose this time-sequence of Rotor switch con-

figurations (each a one-to-one matching of input to output ports, or

simply a “matching”) so that each endpoint (i.e., ToR) is provided a

direct connection to every other endpoint within one full cycle of

matchings.

Figure 3 illustrates this approach, showing two full cycles of

three matchings. We highlight the changing connectivity of the

top port as it cycles through matchings connecting it to the 2nd,

3rd, and 4th ports across time. Because this approach decouples the

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA W. M. Mellette et al.

M1 M2 M3 M1 M2 M3

t1 t2 t3 t4 t5 t6

. . .

Time

Figure 3: Rotor switches move through a static, round-
robin set of configurations, ormatchings, spending an equal
amount of time in each matching.

switch state from the traffic in the network, it requires no demand

collection, no switch scheduling algorithm, and no network-wide

synchronization. The switches simply run “open loop.”

As a first cut, each NR -port Rotor switch could repeatedly cycle

through all NR ! possible matchings, corresponding to the full set of

potential matchings offered by a crossbar switch. However, it would

take an infeasibly long time to complete this cycle for large NR , and

we could not guarantee that a given connection is implemented

within any reasonable amount of time. Further, only (NR−1)match-

ings are necessary to ensure connectivity between all NR ToRs. An

example set of these matchings is shown in Figure 4(a) for NR = 8.

Using these (NR − 1) matchings, we can guarantee that each ToR

is connected to every other ToR within one matching cycle. This

functionality is similar to a rotor device [2].

Still, for networks withmany ToRs, cycling through even (NR−1)

matchings may still take too long. Instead, as shown in Figure 4(b),

we distribute the (NR − 1) matchings among Nsw parallel Rotor

switches, speeding up the matching cycle time by a factor of Nsw .

We show in Section 4.2 that for a network of 10s of thousands of

servers, we can cycle through as few as 16 matchings per switch

with Nsw = 128. In this configuration, each Rotor switch only

provides partial connectivity between the ToRs. Taken together,

however, the complete set of switches restores full connectivity in

the network. We discuss the implications of our design in Section 4,

and explain how our design maintains connectivity even in the

presence of switch failure in Section 5.3.

3.2 One-hop direct forwarding
Given the baseline round-robin connectivity provided by Rotor

switches, each ToR must decide how to route traffic over the net-

work. The simplest approach is for ToRs to send data only along

one-hop, direct paths to each destination, resulting in equal band-

width between each source-destination pair. For uniform traffic,

this behavior results in throughput saturating the network’s bisec-

tion bandwidth (minus the switch duty cycle), and is inherently

starvation free. However, for skewed traffic patterns, this approach

does not take advantage of slack network capacity when some ToRs

are idle, wasting potentially significant amounts of bandwidth.

3.3 Two-hop indirect forwarding
To improve throughput in skewed traffic conditions, we rely on

the classic and well-studied technique of indirection. Like Valiant’s

routing method [30], we allow traffic to pass through intermediate

Nsw Rotor switches,

…

M1

t1

(a)

M1 M2 M3 M4 M5 M6 M7

t2 t3

M2 M3 M4 M5 - M6 M7 -

t1 t2 t3 t1 t2 t3 NP packet
switches

ToR 1 ToR 2 ToR 3 ToR 4

Rack 1 Rack 2 Rack 3 Rack 4 …

ToR NR

Rack NR

…

Nup =
Nsw + NP
uplinks

t1 t2 t3 t4 t5 t6 t7

Nm = NR – 1
matchings

... of (NR)! possible

Rotor switch

(b)
1 /m R swN N N

Figure 4: (a) A Rotor switch cycles through (NR − 1) match-
ings to provide full connectivity between racks. (b) Phys-
ically, these matchings are distributed among Nsw Rotor
switches which, taken together, provide full connectivity.

endpoints, which subsequently forward traffic to the final destina-

tion. Chang et al. showed that Valiant’s method, when coupled with

two stages of round-robin switches, yields 100% throughput for

arbitrary input traffic
1
[5]. Shrivastav et al. are investigating an ap-

proach similar to Chang’s applied to rack-scale interconnects [28].

RotorNet is a datacenter-wide fabric, and we leverage the large

number of ToR switch uplinks to extend Chang’s approach, paral-

lelizing it across a number of Rotor switches. For large networks,

such as the example network in Section 4.2, this modification re-

duces the matching cycle time, and thus the delivery time of traffic,

by more than 100× compared to sequentially cycling through all

matching patterns. RotorNet routes traffic through the same single-

stage fabric twice, and a straightforward implementation would

reduce throughput by at most a factor of two (as half the network

bandwidth would now be consumed by indirect traffic), yielding

half bisection bandwidth for arbitrary input traffic. We argue that

this trade-off is justified by the fact that raw network bandwidth

is plentiful in optical networks. Moreover, through careful exten-

sions to the basic Valiant load balancing approach (described in

Section 5 and evaluated in Section 7), we are able to recapture a

significant amount of the theoretical throughput loss in practice,

meaning the factor-of-two reduction in throughput is a worst-case,

not common-case, trade off. Indirection requires buffering traffic

within the network, but outside of the optical Rotor switches them-

selves, since they cannot buffer light. Indirect traffic is buffered on

a per-rack basis, either at the ToR switch or in end-host memory

1
Subject to the minor technical condition that input traffic can be modeled as a sta-

tionary and weakly mixing stochastic process.

RotorNet: A Scalable, Low-complexity, Optical Datacenter Network SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

accessible to the ToR through RDMA. Buffering data on end hosts,

similar to Liu et al. [20], is likely the simplest implementation as end

hosts are already required to buffer direct traffic while waiting for

the appropriate matching to come up in the schedule. We quantify

the additional buffering requirements imposed by indirection in

Section 7.5.

4 PRACTICAL CONSIDERATIONS
In this section, we explain how the design of RotorNet allows it to

scale to modern datacenter sizes of tens of thousands of servers

and thousands of ToRs cost-effectively. We provide a comparison

to existing Fat Tree topologies, and address manufacturing and

deployment concerns.

4.1 Scalability
4.1.1 Achieving high port count. The key to RotorNet’s scala-

bility is the use of Rotor switches, which are fundamentally more

scalable than traditional optical circuit switches. In particular, a

traditional N -port OCS implements a crossbar, meaning it can be

configured to any of N ! matching patterns. This flexibility limits

the switching speed and radix of a MEMS-based OCS because the

physical requirements of each micro-mirror switching element are

coupled to the switch radix [24]. As a result, commercially available

OCSes have radices on the order of 100 ports and reconfiguration

times of 10s of milliseconds.

Connecting thousands of ToRs together with conventional OC-

Ses requires those OCSes be cascaded in a multi-stage optical topol-

ogy, which introduces significant signal attenuation. Higher signal

attenuation, in turn, requires higher sensitivity optical transceivers

or optical amplification, which would almost certainly negate any

cost savings gained by using OCSes. Similarly, designs that employ

O(100)-port OCSes to connect pods (instead of racks) replace less

of the electronic network, limiting their cost effectiveness. Finally,

even if the OCS radix could be increased or signal loss reduced,

commercial crossbar OCSes still reconfigure much too slowly to

support datacenter traffic dynamics.

In Rotor switches, switching elements need only differentiate

between the number of matchings—as opposed to the number of

ports in the crossbar—making them fundamentally more scalable.

For example, in a 2,048-rack RotorNet, the number of matchings

in each Rotor switch is two-orders-of-magnitude smaller than the

switch radix. We show in Section 6.1 that Rotor switches with 2,048

ports can achieve a reconfiguration time of 20 µs using existing

technology. Thus, Rotor switches can connect 1000s of racks in the

datacenter, and achieve a response time on the same order as other

state-of-the-art approaches [12, 15].

4.1.2 Reducing cycle time through sharding. In a circuit-switched
network, connecting the endpoints is only half the issue; the other

half is ensuring timely service. This involves managing the delay

due to circuit reconfigurations, and for RotorNet, waiting until

connectivity is established through one of the Rotor matchings.

The time it takes to cycle through all matchings in RotorNet

is a critical metric that gates how much time passes before all

endpoints have an opportunity to communicate with each other. To

speed up the rate at which we cycle through matchings, we employ

a different subset of matching patterns in each Rotor switch, as

Number Rotor switches (Nsw = Nup): 512 256 128

Number matchings / switch (Nm): 4 8 16

Cycle time (µs) at duty cycle = 0.9: 800 1,600 3,200

Cycle time (µs) at duty cycle = 0.75: 320 640 1,280

Table 2: Trade-offs between the main parameters in a
2,048-rack RotorNet, assuming a 20-µs reconfiguration de-
lay. For reasonable values of Nsw and duty cycles, the entire
network-wide cycle time can remain on the order of 1 ms.

shown in Figure 4(b). The number of matchings implemented by

each switch is Nm = ⌈(NR − 1)/Nsw ⌉.

Table 2 shows the cycle times for a 2,048-rack RotorNet using var-

ious numbers of Rotor switches and duty cycles. The duty cycle is

the fraction of time traffic can be sent over the network, accounting

for the time the OCS spends reconfiguring. For a given reconfigura-

tion speed and number of matchings, a higher duty cycle leads to a

longer matching cycle. For the configurations shown in Table 2—

including the particular realization described below—cycle times

on the order of 1 ms are possible. Such delays are shorter than disk

access times, and would thus serve disk-based data transfers well.

4.1.3 Supporting low-latency traffic. For flows with latency re-

quirements smaller than the cycle time (≈1 ms), we rely on pre-

viously demonstrated hybrid approaches [13, 20, 32], where low-

latency data is sent over a heavily over-subscribed packet-switched

network, and all other traffic traverses RotorNet. To achieve a hy-

brid architecture, our design simply faces a fraction of the upward-

facing ToR ports toward a packet-switched network, as shown in

Figure 4(b). Applications are required to choose which traffic is sent

over the packet-switched network, setting QoS bits in the packet

header which then trigger match-action rules in the ToR. This de-

sign supports a certain percentage of low-latency bandwidth, for

example 10–20%. The remaining 80–90% transits RotorNet.

We note that RotorNet’s control plane is self-contained—no part

of it relies on the existence or operation of a packet-switched net-

work. In particular, no control messages or configurations are sent

over the packet-switched fabric. Thus, RotorNet management is en-

tirely separate from any packet-switched network used to support

a hybrid design.

4.2 An example network
As a concrete comparison point, consider a hypothetical 65,536-

end-host network with 400-Gb/s links to each end host (a 26-Pb/s

network). We design the network using k = 64-port electronic

switches, each with an aggregate bandwidth of 25.6 Tb/s. Such

switches are projected to be available in the next few years. While a

Fat Tree treats each ToR port as a single 400-Gb/s link, in RotorNet

we split the bandwidth of each ToR port, creating 128 100-Gb/s

links which connect to a set of 128 Rotor switches. Commercial ToR

switches today offer this same functionality—a single 100-Gb/s port

can be broken into four logical 25-Gb/s links, providing a larger

number of lower-bandwidth ports. While the upward-facing ToR

ports in RotorNet are logically distinct, we package these ports into

32 400-Gb/s transceivers, where each transceiver has 4 transmit

fibers and 4 receive fibers in a ribbon cable, with each fiber carrying

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA W. M. Mellette et al.

Network # EPS #TRX # Rotors Agg.

architecture [# ports] [# ports] BW

1:1 Fat Tree 5.1 k [328 k] 262 k 0 [0] 100%

3:1 Fat Tree 2.6 k [168 k] 103 k 0 [0] 33%

RotorNet, 10% EPS 2.3 k [149 k] 84 k 128 [262 k] 50-100%

RotorNet, 20% EPS 2.5 k [162 k] 96 k 128 [262 k] 50-100%

Table 3: Components and relative bandwidths of 65,536-end-
host networks builtwith Fat Tree andhybridRotorNet archi-
tectures, assuming k = 64 port packet switches (and ToRs).
RotorNet is cost-comparable with a 3:1 Fat Tree, but as we
show in Section 7, delivers higher throughput.

a logically separated 100-Gb/s channel. We emphasize that because

the optical signal loss of a Rotor switch is low (2 dB), RotorNet can

use the same or similar (cost) optical transceivers used in a Fat Tree

network. The fibers from each ToR are routed to a central location

and broken out to connect to the Nsw = 128 Rotor switches. Each

Rotor switch provides 2,048 ports, one for each rack in the network,

and implements Nm = 16 matchings.

An explicit cost comparison between RotorNet (or any optical

network proposal) and a Fat Tree depends on volume pricing of

packet switches and transceivers, installation expenses, and the

manufacturing cost of OCSes. These cost numbers are not publicly

available, so we use the number of components as a proxy for cost

when comparing networks. Table 3 shows the component counts—

including electrical packet switches (EPS), transceivers (TRX), and

Rotor switches—for this 65,536-end-host network built with fully

provisioned (1:1) and over-subscribed (3:1) Fat Tree topologies,

as well as hybrid RotorNet topologies with 10% and 20% packet

switching bandwidth. RotorNet requires fewer packet switches and

transceivers than both the Fat Trees, but does require optical switch-

ing hardware that the electronic networks do not. Because Rotor

switches can be mass-produced as described below, the per-port

cost of a Rotor switch can be less than that of a packet switch. Con-

sidering that optical transceivers are the dominant cost in today’s

datacenter network fabrics [29], we estimate that for between 10–

20% packet switching, a hybrid RotorNet will be cost-competitive

with a 3:1 over-subscribed Fat Tree.

4.3 Manufacturing and deployment
While the matching patterns in Figure 4 provide complete connec-

tivity, for pragmatic reasons we choose a different set of (NR − 1)

matchings which consist of only bidirectional connections (i.e. their

adjacency matrix is symmetric).

To reduce manufacturing cost, instead of configuring each Rotor

switch with unique matching patterns, we can instead build all

Rotor switches with the same set of internal bidirectional matchings

and simply permute the input wiring pattern to each switch in

order to realize disjoint matchings among Rotor switches. This

approach dramatically reduces cost because it requires only one

unique optical element to perform the matchings internal to each

switch, rather than having to build Nsw unique switches. Space

does not permit a full discussion, but the main limitation of such

an approach is that the number of Rotor switches must be a power

of two. We leave to future work the investigation of other methods

for arranging the internal connectivity of Rotor switches.

RotorNet also offers a path for incremental deployment to reduce

the upfront cost. Consider an eventual deployment that will support

NR racks with Nsw Rotor switches. By choosing the appropriate

input port wirings to Rotor switches (or equivalently the matching

patterns contained within each switch), NR/X racks can be de-

ployed with each ToR switch having 1/X of its upward-facing ports

populated, connecting to Nsw /X Rotor switches. This configura-

tion provides a network with 1/X 2
the bisection bandwidth. Similar

to the matching patterns described above, the only constraint on

this approach is that X be a power of two.

5 DISTRIBUTED INDIRECTION
Top-of-rack switches in RotorNet implement RotorLB (RotorNet

Load Balancing), a lossless, fully distributed protocol based on the

principle of Valiant load balancing [30]. When indirecting traffic,

RotorLB injects traffic into the network fabric exactly two times:

traffic is first sent to an intermediate rack, where it is temporarily

stored, and then forwarded to its final destination. RotorLB stitches

together two-hop paths over time; i.e., the source is connected to

an intermediate rack during one matching, but the intermediate

rack is connected to the destination in a subsequent matching.

Unlike traditional VLB, which always sends traffic over random

two-hop paths, RotorLB (1) prioritizes sending traffic to the desti-

nation directly (over one-hop paths) when possible, and (2) only

injects new indirect traffic when that traffic will not subsequently

interfere with the intermediate rack’s ability to send traffic directly.

These two policies improve network throughput by up to 2× (for

uniform traffic) compared to traditional VLB.

5.1 ToR and end-host responsibilities
In RotorLB, each ToR switch is responsible for keeping an up-to-

date picture of the demand of each end host within the rack and for

exchanging in-band control information with other ToRs. There are

two types of traffic the ToR must track: local traffic generated by

hosts within the rack, and non-local traffic that is being indirected

through the rack. Each ToR is responsible for pulling traffic from

end hosts at the appropriate times and managing the storage of

non-local traffic. Indirect traffic can be stored in off-chip memory

at the ToR or in DRAM at the end hosts. We analyze the amount of

memory required for buffering indirect traffic later in Section 7.5.

RDMA can achieve microsecond latencies when pulling/pushing

data directly from/to end-host memory.

Each end host, in turn, must send to the ToR a message when

it has traffic to send, including the quantity and destination of the

traffic. This information can be generated by inspecting transmit

queues or relaying application send calls. Following prior work

on inter-rack datacenter networks [13, 15, 17], we abstract away

intra-host and intra-rack bottlenecks (which also exist in packet-

switched networks) and focus on RotorNet’s ability to handle inter-

rack traffic.

5.2 RotorLB algorithm and example
The RotorLB algorithm runs on each ToR switch. At the start of each

matching slot (the time period for which a Rotor switch implements

RotorNet: A Scalable, Low-complexity, Optical Datacenter Network SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Algorithm 1 RotorLB Algorithm

function Phase 1(Enqueued data, slot length)

alloc ← maximum possible direct data

capacity ← slot length minus alloc
offer ← remaining local data

send offer , capacity to connected nodes ◃ offer

send allocated direct data

remain← size of unallocated direct data

return remain
function Phase 2(remain, LB length)

recv offer and capacity from connected nodes

indir ← no allocated data

avail ← LB length minus remain
offeri ← offeri if availi , 0

offerscl ← fairshare of capacity over offer
while offerscl has nonzero columns do

for all nonzero columns i in offerscl do
tmpfs← fairshare of availi over offerscli
availi ← availi − sum(tmpfs)
indir ← tmpfs

offerscl ← offer − indir
tmplc ← capacity − sum(indir)
offerscl ← fairshare of tmplc over offerscl

send indir to connected nodes ◃ accept

function Phase 3(Enqueued local data)

recv indir from connected nodes

locali ← enqueued local data for host i
indiri ←min(indiri , locali)
send indiri indirect local data for host i

each matching), RotorLB determines the quantities of direct and

indirect traffic to send during that slot. Before sending new indirect

traffic into the network, RotorLB prioritizes the delivery of stored

non-local traffic (which is on its second hop) as well as local traffic

that can be sent directly to the destination in the current slot. With

any remaining link capacity in that slot, RotorLB indirects traffic on

a per-destination granularity. To limit buffering and bound delivery

time of indirected traffic, RotorLB only indirects as much traffic as

can be delivered within the next matching cycle (the full cycle of

matching slots). We use a pairwise “offer/accept” protocol between

ToRs to exchange current traffic conditions, and then adaptively

determine the amount of indirect traffic to be sent based on those

conditions. The fraction of link bandwidth used to support indirect

traffic varies between 0% (if the rack’s locally-generated traffic can

saturate the link) and 100% (if the rack has no locally-generated

traffic to send during a matching slot, and would otherwise be idle).

To most effectively balance load, we allow traffic from the same

flow to be sent over RotorNet’s single one-hop path and also to be

indirected over multiple two-hop paths. This multipathing can lead

to out-of-order delivery at the receiver. Ordered delivery can be

ensured using a reorder buffer at the receiver, and we evaluate this

approach in more detail in Section 7.3.

Below, we describe the basic operation of the RotorLB algorithm,

moving through a simple example from the perspective of a single

 .75 .25

 .25 .5

 0 .25

 .25 .75

 0 .5

L:

N:

Rack 1

L:

N:

 1 1

 .75 .25

 Time

Rack 2

L:

N:

L:

N:

R1 R2

Send
traffic

Recon-
figure

R1 R3

St
ar

t o
f s

lo
t

En
d

of
 sl

ot

…

Offer /
Accept

Figure 5: RotorLB example. Matrix rows represent sources
and columns represent destinations; L and N represent local
and non-local traffic queues, respectively; matrix elements
show normalized traffic demand. In the current matching
between racks 1 and 2, traffic which can be sent directly
is bounded by black rectangles, stored indirect traffic is
marked by a red triangle, one-hop direct traffic is marked
by a green circle, and new indirect traffic is indicated by a
blue oval.

Rotor switch connection over the course of one matching slot. The

RotorLB algorithm is outlined in Algorithm 1.

Consider the ToRs of two racks, R1 and R2, which have current

demand information for the hosts within each rack stored in non-

local (N) and local (L) queues, as shown in Figure 5. In this example,

demands are normalized so that one unit of demand can be sent

over the ToR uplink in one matching slot. Note that, as described

below, there is no central collection of demand–each host simply

shares its demand with its ToR switch, and ToR switches share

aggregated demand information in a pairwise fashion.

Phase 1: Send stored non-local and local traffic directly. Connectiv-
ity in RotorNet is predictable, and each ToR switch anticipates the

start of the upcoming matching slot as well as to which rack it will

be connected. After taking a snapshot of the N and L queues, the

ToR computes the amount of traffic destined for the upcoming rack.

Delivery of stored non-local traffic on its second (and final) hop is

prioritized to ensure data is not queued at the intermediate rack for

long periods of time. Delivery of local traffic has the next priority

level. In Figure 5, R1 has 0.25 units of stored non-local traffic (red

triangle) and 0.75 units of local traffic (green circle) destined for

R2, so it allocates the entire ToR uplink capacity for the matching

slot duration to send this traffic. R2 has no stored non-local or local

traffic for R1, so no allocation is made.

The ToR then forms a RotorLB protocol offer packet which con-

tains the amount of local traffic and the ToR uplink capacity which

will remain after the allocated data is sent directly. The smaller

of the two quantities constitutes the amount of indirect traffic the

ToR can offer to other racks. Once the matching slot starts, the ToR

sends the offer packet to the connected rack. As an optimization,

rather than waiting for the entire offer/accept process to complete,

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA W. M. Mellette et al.

the ToR can also begin sending the stored non-local and local traffic

which was been allocated for direct delivery to the destination.

Phase 2: Allocate buffer space for new non-local traffic. Shortly
after the start of the slot, the ToR switch receives the protocol packet

containing the remote rack’s offer of indirect traffic. At this point, it

computes how much non-local traffic it can accept from the remote

rack. To do this, the ToR examines how much local and non-local

traffic remain from Phase 1. The amount of non-local traffic it can

accept per destination is equal to the difference between amount

of traffic that can be sent during one matching slot and the total

queued local and non-local traffic. Because the amount of accepted

indirect traffic is limited to the amount that can be delivered in

the next matching slot (accounting for any previously-enqueued

traffic), the maximum delivery time of indirect traffic is bounded

to Nm + 1 matching slots, or approximately one matching cycle

(see Section 7.3). The algorithm handles multiple simultaneous

connections by fair-sharing capacity across them.

In Figure 5, R1 sees via the offer packet that R2 would like to

forward 1 unit of traffic destined for each R3 and R4 (blue oval),

and that R2 has a full-capacity link to forward that data. R1 already

has 0.25 units of local traffic for R3 and 0.5 units of stored non-local

traffic for R3. Therefore, it allocates space to receive 1− 0.75 = 0.25

units destined for R3 and 0.75 units for R4 from R2, which fully

utilizes the remaining link capacity from R2 and ensures that all

queued traffic at R1 will be admissible.

Once the allocation is made to receive non-local traffic, the ToR

switch responds with a protocol accept packet informing the remote

rack how much traffic it can forward on a per-destination basis.

Phase 3: Forward local traffic indirectly. Finally, the ToR switch

receives the protocol accept packet from the remote rack. After it

finishes sending direct traffic determined in Phase 1, it forwards

new non-local traffic to the remote rack per the allocation specified

by the accept packet.

In Figure 5, R2 receives an accept packet informing it that 0.25

units of traffic destined for R3 and 0.75 units destined for R4 may

be sent. It forwards this traffic, which is stored as non-local traffic

at R1. Finally, the Rotor switch reconfigures and establishes a new

connection, and the RotorLB algorithm runs again.

5.3 Fault tolerance
A simple extension to RotorLB, called RotorLB-FT, ensures that the

network is tolerant to failures. The key idea is to rely on indirect

paths to “route around” any such failures. Failures of a link, ToR,

or Rotor switch are discovered at the beginning of a particular

matching slot, because a rack will not receive RotorLB protocol

messages over the link corresponding to the failure.

The primary modification to the algorithm is to give traffic which

would traverse a failed network element priority over all other

traffic, so that it is ensured indirect bandwidth regardless of the

traffic pattern. Each ToR switch first determines the number of

candidate fault flows. This is the number of locally generated flows

which both see a fault on a one-hop path out of the local rack and

do not see a fault on a one-hop path out of the currently connected

rack (i.e. a clear two-hop path exists). The ToR switch then allocates

at most 1/(2(NR −1)−1) of the uplink bandwidth to each candidate

Round robin
switch control

Optical
assembly

Fibers to/
from servers

Fibers to/from
matchings

Matchings
3 & 4

Matching
7

Matchings
5 & 6

Matchings
1 & 2

Figure 6: We installed 7 Rotor matchings into a prototype
OCS to create two parallel Rotor switches. An FPGA sets the
switches to cycle through the matchings in open loop.

fault flow. This factor is chosen conservatively so that if there is

only one remaining uplink out of a given rack, and every other

rack sends fault traffic to that rack, the sum of the fault traffic

and an equal share of local traffic will be admissible to leave the

rack. In other words, the overall algorithm is still guaranteed to be

starvation free with a bounded delivery time of Nm + 1 matching

slots. The performance of RotorLB-FT is evaluated in Section 7.7.

6 ROTORNET PROTOTYPE
We evaluate the feasibility of RotorNet and demonstrate Rotor

switching in operation by constructing a small-scale prototype

network that runs RotorLB to communicate data between endpoints.

We also use the prototype results to validate our model of RotorNet,

which we use to simulate the behavior of RotorNet at large scale

later in Section 7.

6.1 Prototype architecture
To construct our prototype, we need an optical Rotor switch to

instantiate the matching patterns specified by the RotorNet ar-

chitecture. However, no commercial optical switches support the

partial connectivity necessary to demonstrate the advantages of Ro-

tor switching. Rather than constructing a Rotor switch from scratch,

we modified a research device called a Selector switch [25] which is

particularly well-suited for extension to a Rotor switch. Specifically,

this prototype Selector switch is a gang switch that allows an array

of 61 single-mode fiber input ports to be switched, as a group, be-

tween four output arrays of 61 fibers with a reconfiguration speed

of 150 µs.

We constructed a Rotor switch from this Selector switch, using

an array of fiber optics to hard-wire the Rotor matchings into the

switch. More precisely, to support 8 endpoints, we divided the

monolithic Selector switch into two Rotor switches, and, following

Section 4, we distributed a full set of 7 Rotor matchings across

the two switches, with each Rotor switch implementing either 3

or 4 matching patterns. Next, we programmed an FPGA to send

control signals to the Rotor switches so they rotated through the

RotorNet: A Scalable, Low-complexity, Optical Datacenter Network SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

Rotor matchings in an open loop. This setup is summarized in

Figure 6. The end result is two Rotor switches which support up to

8 endpoints, reconfigure 100–1,000× faster than commercial OCSes,

and are compatible with commercial optical transceivers without

requiring optical amplification.

While the MEMS device used in the prototype is an off-the-shelf

product and not optimized for speed, we conducted detailed optical

analysis [25] to show that Selector switches can scale to at least

2,048 ports with 20-µs reconfiguration speed and 2-dB insertion

loss. Neither of these quantities are fundamental scaling limits, but

rather specific design points at which we assessed the switch’s

performance. These scaling results also apply to Rotor switches, as

they are essentially Selector switches with Rotor matching patterns

installed. In this section, we report data gathered with the 150-µs

prototype switch, but assume a reconfiguration speed of 20 µs in

the analysis in Section 7.

RotorLB on endpoints. Using the prototype Rotor switches, we
built an eight-ToR RotorNet (NR = 8), using commodity end hosts

to emulate ToRs. Each end host was equipped with a dual-port 10-

Gb/s Myricom network interface controller (NIC) and two optical

transceivers, establishing one 10-Gb/s optical link to each Rotor

switch.
2
We implemented RotorLB on the end hosts as a user-level

process, using the Myricom Sniffer API to directly inject and re-

trieve packets from the NIC. The only requirement to run RotorLB

in practice is that endpoints be made aware of the Rotor switches’

states. In a real implementation using ToR switches, each ToR could

monitor the status of its optical links to determine when one match-

ing ends (i.e., the link goes down), and the next matching begins

(i.e., the link comes back up again). The commercial NICs we used

did not have a built-in low-latency way to detect link up/down

events, so we used an out-of-band channel to notify end hosts of

the switch reconfiguration events.

6.2 Prototype evaluation of RotorLB
We emulated a RotorLB ToR switch on each server using distinct

user-level threads to generate, send, and receive UDP traffic, with an

additional thread to process state changes of the Rotor switches. To

analyze performance under a variety of traffic conditions, we gener-

ated traffic patterns with different numbers of “heavy” connections.

Each heavy connection attempts to send data at line rate. We define

the traffic density as the fraction of heavy connections out of all pos-

sible connections (56 in our 8-endpoint prototype). For each traffic

density, we repeated the experiments with 32 randomly-generated

traffic matrices representing the inter-rack demand.

As a baseline, we first sent data through the network using

only one-hop forwarding. Next, we repeated the experiments with

RotorLB running on the endpoints. Figure 7 shows the relative

network throughput under RotorLB normalized to that of one-hop

forwarding. We see that RotorLB significantly improves throughput

for sparse traffic patterns. For a single active heavy connection,

RotorLB improves throughput by the expected factor of NR − 1 (7

in this case), as traffic can now take advantage of all paths through

the network. Further, we see that our implementation of RotorLB

2
10 Gb/s was chosen for convenience; the Rotor switch is rate agnostic.

0 0.2 0.4 0.6 0.8 1
Traffic density

1

3

5

7

N
or

m
al

iz
ed

 a
gg

. t
hr

ou
gh

pu
t

Measurement, RotorLB
Model, RotorLB (average)
Model, RotorLB (spread)
One-hop forwarding

Figure 7: Measured andmodeled throughput underRotorLB
relative to that using one-hop forwarding. Circles represent
the average througput over 32 random traffic patterns; error
bars show the maximum and mimimum.

adaptively converges to the throughput of one-hop forwarding for

uniform traffic, as intended.

Figure 7 also overlays the modeled (Section 7) relative through-

put of RotorLB to one-hop forwarding for the same set of traffic

conditions used in the measurements. The close agreement between

model and measurement demonstrates that our RotorLB implemen-

tation operates as designed, and also validates our model’s ability

to accurately predict RotorLB performance in practice. We use this

model to explore the performance of RotorNet at scale.

7 EVALUATION
In this section, we evaluate the behavior and performance of Rotor-

Net at a larger scale than was feasible to prototype. In particular,

we employ three distinct simulators at varying levels of fidelity

and validate the results of our packet-level simulation against a

Mininet-based emulation.

7.1 Methodology
Depending on the simulator, we consider two different types of

traffic models, fluid flow and flow level. We describe each below.

Fluid-flow model: We start with a network model that treats traf-

fic as a continuous fluid flow, allowing us to measure the bandwidth,

delivery time, and buffering requirements for stable and dynamic

traffic patterns using Matlab. This model maximizes the amount

of data sent through RotorNet. For purposes of comparison, we

model a Fat Tree as a single, ideal packet switch. In particular, the

packet switch is ideal in that it connects all racks with a single non-

blocking crosspoint fabric and its per-port bandwidth is assigned by

a linear program solver configured to maximize throughput. This

idealized packet switch upper bounds the performance of a Fat Tree

network, which in practice has lower performance due to transport

protocol and hashing effects.

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA W. M. Mellette et al.

Flow-level simulator: We also use a custom-written flow-level

simulator that relies on discrete flow events to track the arrival and

completion times of flows in RotorNet. While we do not simulate

packets in this method, the flow-level results approximate the per-

formance of RotorNet with a lossless transport protocol running

on top of it, such as RDMA over Converged Ethernet (RoCE).

Packet-level simulator: We also model a baseline 3-level Fat Tree

using the ns-3 packet-level simulator. This allows us to model the

effects of TCP under flow hashing and port contention. Under

moderate to heavy network load, these effects lead to a long tail in

flow completion times in Fat Trees, as previously observed [33].

Mininet emulator: In addition to ns-3, we model the baseline

3-level Fat Tree using Mininet [18] with 100-Mb/s links. This allows

us to corroborate our ns-3 findings using a real TCP stack, though

we still require ns-3 to validate our work at multi-gigabit scale.

7.1.1 Traffic models. Our throughput analyses employ two dis-

tinct traffic models, described below. We defer discussion of the

traffic characteristics used to evaluate flow completion time until

Section 7.4.

Synthetic stochastic: We model inter-rack traffic as a random

process, and vary the total number of heavy connections (vary-

ing the traffic density as defined in Section 6.2). For the fluid-flow

network models, we represent traffic as a random binary matrix

with elements that are either 1, representing an elephant flow(s)

between a given rack pair, or 0, representing no traffic exchanged

between that rack pair. In a hybrid deployment, low-latency and

mice flows would be “swept” to the packet switch, resulting in a 0

entry in the demand matrix. For each fixed traffic density, we indi-

vidually evaluate 100 randomly-generated traffic matrices, showing

the average and error bars across runs in the plots.

Commercial traces: In addition to randomly-generated binary

demand matrices, we also model traffic patterns reported in produc-

tion datacenters. Following the approach of Ghobadi et al. [15], we

use published traffic-matrix heatmaps collected over 5-minute inter-

vals to define the probability of inter-rack communication. We then

use a Poisson generation process to determine flow arrival times

and drew flow sizes from reported distributions. We use traces re-

ported from a Microsoft datacenter by Ghobadi et al. [15] and from

two different Facebook cluster types, Hadoop and front-end web-

server [11, 27]. Given RotorNet’s cycle time of approximately 1 ms,

we model flows arriving within 1-ms windows using the Poisson

process. Finally, to emulate a hybrid RotorNet with 10% packet-

switched bandwidth, we retain the largest flows that contributed

90% of the total bytes and input that to the RotorNet model.

7.2 Throughput analysis
We compare the throughput of RotorNet to that of an idealized

packet switch using the fluid-flow model described in Section 7.1,

considering basic one-hop forwarding, RotorLB, and a computa-

tionally intensive linear program that provides an upper bound on

potential throughput. For reference, we include the throughput of

a 3:1 over-subscribed Fat Tree, which is estimated in Section 4.2 to

be cost-comparable with RotorNet.

0 0.2 0.4 0.6 0.8 1
Traffic density

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
ag

gr
eg

at
e

th
ro

ug
hp

ut

Matching fill factor
LP solver
RotorLB
One-hop forwarding
Ideal 3:1 Fat Tree

(a) NR = 16, Nm = 4, LP result shown for reference.

0 0.2 0.4 0.6 0.8 1
Traffic density

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e
ag

g.
 th

ro
ug

hp
ut

Matching fill factor
Synthetic traffic
Microsoft traffic
Facebook: front-end
Facebook: Hadoop
One-hop forwarding
Ideal 3:1 Fat Tree

(b) NR = 256, Nm = 8

0 0.025 0.05
Traffic density

0

0.5

1

(c) Detail of (b)

Figure 8: RotorLB throughput (relative to an ideal packet
switch) vs. trafficdensity. (b) and (c) also indicate throughput
under commercial datacenter traffic patterns.

Figure 8 shows the throughput of RotorLB normalized to that of

the ideal, fully-provisioned electrical network. The matching fill fac-

tor, which is how perfectly the Rotor matchings are distributed into

Rotor switches ((NR − 1)/(NmNsw)), upper bounds the throughput.

While the fill factor is 0.9375 with only NR = 16 racks, Figure 8b

shows that the matching fill factor approaches 1 by NR = 256 racks.

As expected, after accounting for the matching fill factor, one-

hop forwarding results in 100% throughput for uniform traffic, but

throughput is linearly reduced for skewed traffic. Before assessing

RotorLB, we use a linear program (LP) solver to calculate the upper-

bound throughput for RotorNet under ideal forwarding; that is, if

we had perfect knowledge of the network-wide traffic demand, and

indirect traffic was not restricted to a maximum of two hops. The

result is plotted in Figure 8a for NR = 16 (it is not feasible to run

the LP solver at larger scales).

Next, we calculate the throughput for the RotorLB protocol de-

scribed in Section 5. These calculations assume constant traffic

patterns; we explore the responsiveness of RotorLB to changing

traffic patterns in Section 7.6. Figure 8a shows that RotorLB achieves

close to the ideal (LP-solver) throughput over all traffic densities

RotorNet: A Scalable, Low-complexity, Optical Datacenter Network SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

despite its fully distributed implementation. Figure 8b shows Ro-

torLB’s throughput at scale for 256 racks. Figure 8c highlights that,

at scale, RotorLB’s throughput is within a factor of two of an ideal

fully-provisioned packet network independent of traffic conditions.

Recall from Section 3 that this worst-case factor-of-two reduction

in bandwidth is expected from RotorLB’s two-hop routing (i.e. up

to half of RotorNet’s bandwidth is used by traffic on its second hop).

We find that, out of all traffic patterns studied, permutation traffic

yields the worst-case relative throughput for RotorNet compared to

an ideal packet network—a worst-case of 50% relative throughput.

We observe this factor-of-two lower-bound holds for larger-scale

networks with NR > 256.

Finally, following Section 7.1, we model the throughput of Ro-

torLB in a 256-rack RotorNet under a number of production dat-

acenter traffic patterns reported in the literature. The Microsoft

traffic pattern is very sparse, with only a small number of rack

pairs communicating in each time interval. The pattern varies be-

tween millisecond time intervals, leading to the slight variance in

throughput indicated in Figure 8b. The Facebook Hadoop cluster

traffic pattern exhibits denser connections, yielding a throughput

nearly equivalent to random traffic. The Facebook front-end pat-

tern displays heavy multicast and incast characteristics, setting its

throughput apart from that of random traffic.

For the datacenter traffic patterns considered, RotorNet provides

70–95% the throughput of an ideal fully-provisioned electrical net-

work, despite being significantly less expensive, as discussed in

Section 4.2. Compared to a 3:1 over-subscribed Fat Tree of approx-

imately equal cost, RotorNet delivers 1.6× the throughput under

worst-case (permutation) traffic, 2.3× the throughput for reported

datacenter traffic patterns, and up to 3× the throughput for uniform

traffic.

7.3 Bounded delivery time and reordering
By design, RotorNet offers strictly bounded delivery time for one-

hop traffic because it cyclically provisions bandwidth between all

network endpoints. However, under RotorLB, two-hop traffic is

delivered later than one-hop traffic. Because data from the same

flowmay be sent over both one-hop and two-hop paths (as discussed

in Section 5), care must be taken to ensure data is delivered in order

to the receiver. Here, we evaluate the delivery characteristics and

requirements for ordered delivery of traffic under RotorLB.

Adopting terminology from MPTCP, we refer to the fractions of

a single flow that are sent over different one-hop and two-hop paths

as subflows. As discussed in Section 5, a given rack will only accept

as much two-hop traffic to each destination as it can deliver in one

matching slot. Therefore, we expect the worst-case delivery time

of a two-hop subflow to be equal to Nm + 1 matching slots (i.e. one

matching cycle + one matching slot). This worst case occurs when
traffic is forwarded to an intermediate rack and that intermediate

rack is currently connected to the destination. This can happen

because RotorLB does not forward indirect traffic during the same

matching slot in which it is received.

To test this behavior, we track the start time and tail delivery

time of all subflows over a variety of traffic patterns in a RotorNet

with 256 racks and Nm = 8 matchings per switch. The results are

shown in Figure 9. Figure 9a shows that, indeed, no subflows exceed

0 0.2 0.4 0.6 0.8 1
Traffic density

0

5

10

15

S
ub

flo
w

 d
el

iv
er

y
[s

lo
ts

] Delivery bound
Individual subflows
Average

(a) Subflow delivery times for all traffic densities.

0 2 4 6 8
Subflow delivery time [slots]

0

0.25

0.5

0.75

1

C
D

F

(b) CDF for traffic density = 0.2 from (a).

Figure 9: The delivery time of two-hop subflows is bounded
(shown for NR = 256, Nm = 8).

the designed delivery bound of Nm + 1 = 9 matching slots for any

traffic density. Note that although only a subset of subflows are

plotted, the scatter plot is representative of the total distribution.

Looking in more detail at the distribution of subflow delivery

times for a given traffic density in Figure 9b, we see that subflows

are approximately uniformly distributed in time with two notable

exceptions. First, because delivery of stored two-hop traffic is pri-

oritized, two-hop subflows are more likely to be delivered at the

start of a matching slot, accounting for the slight non-uniformity in

the CDF. Second, for traffic densities above approximately 0.05, the

worst-case delivery time is rare, and most subflows are delivered

within one matching cycle (rather than one cycle + one slot).

Subflows injected into RotorNet will be sequentially ordered

between matching slots, but during a single matching slot subflows

from the same flow may take both one-hop and two-hop paths,

depending on the quantity and the time that traffic is committed to

the network by the application. If data sent over a two-hop subflow

logically precedes data sent over a one-hop flow, that data will

arrive out of order at the receiver. We assign the responsibility of

ensuring ordered delivery of data to a reordering process at each

end host. Fortunately, because all injected traffic is guaranteed to be

delivered in Nm + 1 matching slots, the receiver only needs to store

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA W. M. Mellette et al.

0 10 20 30 40
Flow completion time (ms)

0

0.2

0.4

0.6

0.8

1

C
D

F

99
.9

%
-ti

le
 F

at
 T

re
e

10
0%

-ti
le

 R
ot

or
N

et

 (
fa

ir
&

 u
nf

ai
r)

Fat Tree
RotorNet (unfair)
RotorNet (fair)

Figure 10: Flow completion times in RotorNet and a three-
level Fat Tree, both with k = 4-port ToRs, 10-Gb/s links, and
140 200-kB flows per end host. Two examples of bandwidth
allocation in RotorNet are shown: fair sharing bandwidth
across flows and greedily allocating bandwidth to flows one-
by-one.

data received within a sliding window equal to that delivery bound.

For a 100-Gb/s end host link, 200-µs slot time, and Nm = 8, each

host would need a receive buffer of 23MB to ensure ordered delivery

of all incoming flows. This is a modest memory requirement given

the specifications of modern servers.

7.4 Flow completion times
Flow completion time (FCT) remains an important metric for net-

work performance, especially considering the prevalence of services

that are impacted by the presence of a long tail in the FCT distri-

bution [33]. While contemporary multi-rooted trees coupled with

TCP can provide sufficient bandwidth on paper for applications,

FCT in such networks is subject to considerable variance. Here,

RotorNet improves on the state of the art by providing a choice

between either low FCT variance or significantly reduced mean

FCT compared to Fat Trees, while in both cases eliminating the

long tail present in Fat Trees.

To demonstrate this capability, we simulated a 10-Gb/s k = 4

three-level Fat Tree in ns-3, and an equivalently sized RotorNet

using our flow-level simulator. Each host communicates with cross-

rack hosts in an all-to-all pattern with 10 flows of size 200 KB

each, for a total of 2,240 flows overall. Figure 10 depicts the FCT in

milliseconds for the Fat Tree, and for greedy flow completion and

fair-shared bandwidth strategies for RotorNet. Note that the p100

for both RotorNet strategies is identical and a full 30% smaller than

p99.9 for the Fat Tree. In addition, p50 for greedy flow completion

RotorNet is 33% smaller than the Fat Tree. For the fair-shared band-

width strategy, the variance (normalized to the mean) is just 0.6%,

compared to 61% for the Fat Tree.

In order to reduce FCT variance for a Fat Tree network, a network

operator might consider operating the network at lower utilization

0 0.25 0.5 0.75 1
Traffic density

0

100

200

300

400

P
er

 ra
ck

 b
uf

fe
r (

M
B

)

Worst cases observed
Average

(a) Per-rack buffering for all traffic densities.

0 100 200 300 400
Per rack buffer (MB)

0

0.25

0.5

0.75

1

C
D

F

0.1%
0.01%
0%

Loss:

(b) CDF for traffic density = 0.02 from (a).

Figure 11: Per-rack buffering required for a 100-Gb/s deploy-
ment, 20-µs switching, 90% duty cycle, and NR = 256.

levels. To characterize how much lower, we deploy a 100-Mb/s

k = 4 Fat Tree on Mininet[18] and test the same traffic pattern. To

emulate lower network utilization, we cap the flow size and rate to

10% and 20% of the nominal values. While reducing the utilization

to 10% brings mean-normalized variance down to 22% from 70%, we

note that the value is still well above that for fair-shared RotorNet.

Thus, the low utilizations typical in real-world datacenter networks

can be considered as an implicit duty-cycle cost levied to keep

variations in performance low.

7.5 Buffering
Here we use the fluid-flow model from Section 7.1 to determine

the amount of buffering required at each rack to support two-hop

traffic under various traffic patterns.

Figure 11a shows the observed worst cases and average amount

of buffering needed at each rack to support various traffic densities,

with 100 randomly generated traffic patterns per density. In general,

buffering can be expressed as the product of upward-facing ToR

bandwidth and matching slot time, however to make the results

concrete we show absolute storage in bytes, based on 100-Gb/s

links, a reconfiguration delay of 20 µs, and duty cycle of 90%. We

see that the largest amount of required buffering occurs for a traffic

density of approximately 0.02, resulting in each rack requiring 400

RotorNet: A Scalable, Low-complexity, Optical Datacenter Network SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA

0 20 40 60 80
Time (matching cycle)

0

0.2

0.4

0.6

0.8

1

A
gg

re
ga

te
 th

ro
ug

hp
ut

Ideal 1:1 FT
RotorLB
Ideal 3:1 FT

Figure 12: Responsiveness of RotorLB and ideal 1:1 and 3:1
Fat Trees (FT) to changing traffic patterns,NR = 256. RotorLB
converges within two matching cycles.

MB of memory for two-hop traffic. If this traffic were stored on end

hosts, rather than at the ToR switch, 12.5 MB per end host would

be required assuming 32 end hosts per rack.

Next, we consider the amount of memory which could be saved

by permitting a small amount of loss in the network (as opposed

to the strictly lossless fabric we have discussed so far). Figure 11b

shows a CDF of the per-rack buffer requirements for the worst-

case traffic density observed in Figure 11a, which occurs at a traffic

density of approximately 0.02. We see that increasing the loss rate

to 0.01% only reduces the memory requirement by about 6%. This

small achievable reduction in buffering gained by permitting loss

supports our decision to design RotorNet as a lossless fabric.

7.6 Responsiveness
Here, we assess how quickly RotorLB responds to changing traf-

fic patterns. We use the fluid-flow model from Section 7.1, and

abruptly switch between different traffic patterns as RotorLB runs

continuously. Figure 12 shows a typical time series of the aggre-

gate throughput per matching cycle under RotorLB as we vary

the traffic pattern. The throughputs of a fully-provisioned and 3:1

over-subscribed ideal packet-switched network (as described in

Section 7.2) are shown for reference. Upon changing the traffic pat-

tern, RotorLB converges to the new sustained throughput within

two matching cycles. This fast response is because, as described

in Section 7.3, two-hop traffic is drained from intermediate queues

after one matching cycle, allowing RotorLB to adapt to the new

traffic pattern within two matching cycles.

7.7 Fault tolerance
Recall from Section 3 that each Rotor switch implements only a

fraction of RotorNet’s connectivity, meaning that the failure of one

or more Rotor switches could lead to a significant reduction in

overall connectivity. However, we find that using the RotorLB-FT

protocol described in Section 5.3, network connectivity is retained

Failure type: 1 link 25% Rotor sw. 50% Rotor sw.

RotorLB: 0.97 (0) 0.73 (0) 0.53 (0)

RotorLB-FT: 0.99 (0.38) 0.89 (0.3) 0.70 (0.07)

Table 4: Jain’s fairness index across flows (higher is better)
and (in parenthesis, higher is better) ratio of minimum to
maximum bandwidth of flows under various failure scenar-
ios. RotorLB-FT promotes fair allocation of bandwidth un-
der failures and, critically, ensures all flows get non-zero
bandwidth.

even under extensive failure conditions. Table 4 shows fairness

metrics for RotorLB and RotorLB-FT subject to various failures

under all-to-all traffic. We consider a single link failure, a case in

which one quarter of the Rotor switches fail, and a case where

half of the Rotor switches fail. RotorLB-FT scores higher on Jain’s

fairness index [19] than RotorLB by 20% and 30% for the cases that

one-quarter and one-half of the Rotor switches fail, respectively.

Critically, RotorLB-FT provides non-zero bandwidth to all flows

in all failure scenarios considered, whereas RotorLB delivers zero

bandwidth to some flows even in the case of a single link failure.

8 CONCLUSIONS
Optical switching holds the promise of overcoming impending lim-

itations in electrical packet switching, yet has seen resistance to

industrial adoption due to practical barriers. In this paper, we de-

scribe a network fabric based on Rotor switches which decouples

the control of OCSes from the rest of the network, greatly simplify-

ing network control and deployment. Additionally, because Rotor

switching has such a simple implementation, we can design new

OCSes that leverage this new-found simplicity for greater scalabil-

ity. The combination of these two capabilities has the potential to

meet next-generation datacenter bandwidth demands in a manner

much simpler than existing approaches.

ACKNOWLEDGMENTS
We thank our shepherd, Mosharaf Chowdhury, the anonymous

SIGCOMM reviewers, and Amin Vahdat for their useful feedback.

We also thank Facebook for supporting this work through a gift,

and the National Science Foundation for supporting this work

through grants CNS-1629973, CNS-1314921, CNS-1553490, and CNS-

1564185.

REFERENCES
[1] Dan Alistarh, Hitesh Ballani, Paolo Costa, Adam Funnell, Joshua Benjamin, Philip

Watts, and Benn Thomsen. A High-Radix, Low-Latency Optical Switch for Data

Centers (SIGCOMM ’15).
[2] Thomas Beth and Volker Hatz. 1991. A Restricted Crossbar Implementation and

Its Applications. SIGARCH Comput. Archit. News 19, 6 (Dec. 1991).
[3] Garrett Birkhoff. 1946. Tres Observaciones Sobre el Algebra Lineal. Univ. Nac.

Tucumán Rev. Ser. A 5 (1946).

[4] Shaileshh Bojja Venkatakrishnan, Mohammad Alizadeh, and Pramod Viswanath.

Costly Circuits, Submodular Schedules andApproximate Carathéodory Theorems

(SIGMETRICS ’16).
[5] Cheng-Shang Chang, Duan-Shin Lee, and Yi-Shean Jou. 2002. Load Balanced

Birkhoff–von Neumann Switches, Part I: One-stage Buffering. Computer Com-
munications 25, 6 (2002), 611–622.

[6] Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, Yueping

Zhang, and Xitao Wen. OSA: An Optical Switching Architecture for Data Center

Networks and Unprecedented Flexibility (NSDI ’12).

SIGCOMM ’17, August 21-25, 2017, Los Angeles, CA, USA W. M. Mellette et al.

[7] Kai Chen, Xitao Wen, Xingyu Ma, Yan Chen, Yong Xia, Chengchen Hu, and

Qunfeng Dong. WaveCube: A Scalable, Fault-tolerant, High-performance Optical

Data Center Architecture (IEEE INFOCOM ’15).
[8] Li Chen, Kai Chen, Joshua Zhu, Minlan Yu, George Porter, Chunming Qiao, and

Shan Zhong. Enabling Wide-Spread Communications on Optical Fabric with

MegaSwitch (NSDI ’17).
[9] Jack Edmonds. 1965. Paths, trees, and flowers. Canad. J. Math. 17 (1965).
[10] Facebook. 2014. Introducing data center fabric, the next-generation Facebook

data center network. https://goo.gl/mvder2. (2014).

[11] Facebook. 2015. FBFlow Dataset. https://www.facebook.com/network-analytics.

(2015).

[12] Nathan Farrington, Alex Forencich, George Porter, P-C Sun, Joseph E Ford,

Yeshaiahu Fainman, George C Papen, and Amin Vahdat. 2013. A Multiport

Microsecond Optical Circuit Switch for Data Center Networking. IEEE Photonics
Technology Letters 25, 16 (2013).

[13] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Bazzaz,

Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin Vahdat.

Helios: A Hybrid Electrical/Optical Switch Architecture for Modular Data Centers

(SIGCOMM ’10).
[14] David Gale and Lloyd S Shapley. 1962. College admissions and the stability of

marriage. The American Mathematical Monthly 69, 1 (1962).

[15] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-

han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,

Madeleine Glick, and Daniel Kilper. ProjecToR: Agile Reconfigurable Data Center

Interconnect (SIGCOMM ’16).
[16] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,

Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta

Sengupta. VL2: A Scalable and Flexible Data Center Network (SIGCOMM ’09).
[17] Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das, Jon P.

Longtin, Himanshu Shah, and Ashish Tanwer. FireFly: A Reconfigurable Wireless

Data Center Fabric Using Free-space Optics (SIGCOMM ’14).
[18] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, Bob Lantz, and Nick

McKeown. Reproducible Network Experiments Using Container-based Emulation

(CoNEXT ’12).
[19] Raj Jain. 1991. The art of computer systems performance analysis - techniques for

experimental design, measurement, simulation, and modeling.
[20] He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M.

Voelker, George Papen, Alex C. Snoeren, and George Porter. Circuit Switching

Under the Radar with REACToR (NSDI ’14).

[21] He Liu, Matthew K. Mukerjee, Conglong Li, Nicolas Feltman, George Papen, Ste-

fan Savage, Srinivasan Seshan, Geoffrey M. Voelker, David G. Andersen, Michael

Kaminsky, George Porter, and Alex C. Snoeren. Scheduling Techniques for Hybrid

Circuit/Packet Networks (CoNEXT ’15).
[22] He Liu, Matthew K. Mukerjee, Conglong Li, Nicolas Feltman, George Papen, Ste-

fan Savage, Srinivasan Seshan, Geoffrey M. Voelker, David G. Andersen, Michael

Kaminsky, George Porter, and Alex C. Snoeren. Scheduling Techniques for Hybrid

Circuit/Packet Networks (CoNEXT ’15).
[23] Nick McKeown. 1999. The iSLIP Scheduling Algorithm for Input-Queued

Switches. IEEE/ACM Transactions on Networking 7, 2 (1999).

[24] William M. Mellette and Joseph Ford. 2015. Scaling Limits of MEMS Beam-

Steering Switches for Data Center Networks. Journal of Lightwave Technology
33, 15 (Aug. 2015).

[25] William M. Mellette, Glenn M. Schuster, George Porter, George Papen, and

Joseph Ford. 2017. A scalable, partially configurable optical switch for data center

networks. Journal of Lightwave Technology 35, 2 (Jan. 2017).

[26] George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang-Chen

Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat. Inte-

grating Microsecond Circuit Switching into the Data Center (SIGCOMM ’13).
[27] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.

Inside the Social Network’s (Datacenter) Network (SIGCOMM ’15).
[28] Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee, Han

Wang, Rachit Agarwal, and HakimWeatherspoon. 2017. Shoal: a lossless newtork

for high-density and disaggregated racks. Cornell Technical Report (2017).
[29] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy

Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand

Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle,

Stephen Stuart, and Amin Vahdat. Jupiter Rising: A Decade of Clos Topologies

and Centralized Control in Google’s Datacenter Network (SIGCOMM ’15).
[30] Leslie G. Valiant. 1982. A Scheme for Fast Parallel Communication. SIAM J.

Comput. 11, 2 (1982).
[31] John Von Neumann. 1953. A certain zero-sum two-person game equivalent to

the optimal assignment problem. Contributions to the Theory of Games 2 (1953).
[32] Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagiannaki,

T. S. Eugene Ng, Michael Kozuch, and Michael Ryan. c-Through: Part-time Optics

in Data Centers (SIGCOMM ’10).
[33] David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, and Randy

Katz. DeTail: Reducing the Flow Completion Time Tail in Datacenter Networks

(SIGCOMM ’12).

https://goo.gl/mvder2

	Abstract
	1 Introduction
	2 Background & Related Work
	2.1 Packet-switched folded-Clos networks
	2.2 Circuit-switched network fabrics

	3 Design Overview
	3.1 Open-loop switching
	3.2 One-hop direct forwarding
	3.3 Two-hop indirect forwarding

	4 Practical Considerations
	4.1 Scalability
	4.2 An example network
	4.3 Manufacturing and deployment

	5 Distributed indirection
	5.1 ToR and end-host responsibilities
	5.2 RotorLB algorithm and example
	5.3 Fault tolerance

	6 RotorNet prototype
	6.1 Prototype architecture
	6.2 Prototype evaluation of RotorLB

	7 Evaluation
	7.1 Methodology
	7.2 Throughput analysis
	7.3 Bounded delivery time and reordering
	7.4 Flow completion times
	7.5 Buffering
	7.6 Responsiveness
	7.7 Fault tolerance

	8 Conclusions
	Acknowledgments
	References

