
Corundum:

An Open-Source FPGA-NIC
Material from FCCM 2020 talk &

Sigcomm 2020 talk (next week)

Alex Forencich (jforenci@eng.ucsd.edu)
George Papen (gpapen@eng.ucsd.edu)

University of California at San Diego

Motivation for FPGA-based NIC

• Precise control of packet transmission from servers has many
applications
– Rate limiting, flow control, congestion control, TDMA, circuit switching, etc.

• Deterministic sub-microsecond control not feasible in software
• Little hardware support in commercial NICs

– Limited number of queues, limited control over transmit scheduling
– Commercial SmartNICs designed for packet processing, not flow control

• Possible to do on an FPGA
– But there are no extensible high-performance FPGA-based NIC reference

designs to use as a foundation

Corundum NIC

• Corundum is a reference open-source FPGA-based NIC supporting many FPGA platforms
• Provides a network interface similar in performance to a commercially-available NIC
• Enables the implementation of additional hardware features needed for circuit switching

and “in-network” computing.

Host
FPGA

InterfaceInterface
PortPort

TXCQ

RXCQ

TXQ

RXQ

EQ

Desc
fetch

PCIe HIP

DMA IF

MAC
+

PHY
SFP

DMA

TX engine

TX scheduler

RX engine

Hash

Csum

Csum

DMA

Driver

SFP

OS

App

MAC
+

PHY

..
.

..
.

AXIL M

PTP HC
Cpl

write
AXI lite
Stream
DMA
PTP

R
A

M

Scheduler ctrl

NIC Datapath

Completer
(AXI lite)

PCIe
DMA

IF

DMA
Client

(Q)SFP

AXI Lite
Interconnect

BRAM

Control
logic

MUXPCIe

BRAM

DMA
Client

(Q)SFP
BRAM
BRAM

Queue Handling

AXI/AXI lite
master

PCIe DMA

PTP clock

SFP+
TX Q TX sched

TX engine

RX engine
DMA

MAC

Interface (“eth0”)

Interface (“eth1”) (identical)

Port

Port (identical) SFP+

TX CQ

RX Q

RX CQ

EQ

Desc
Fetch

Cpl
Write

Scalable Queue Management

• Each queue is an independent channel between SW and HW
• Traditional NICs support ~100 queues for load-balancing

– Each CPU core or virtual machine gets 1 queue

• Queue management logic stores queue state in block RAM
– 128 bits/queue
– Scalable to 10,000+ queues
– Permits fine-grained, per-flow or per-destination control

Transmit scheduler

• Determines which queues to transmit from
• Default scheduler is round-robin

– Cycles through all active queues, sending one packet at a time

• Possible to extend or replace scheduler
– Implement rate limiting, WFQ, etc.
– Ex: SENIC, Carousel, PIEO, Loom

• Possible to enable/disable queues based on events or PTP
time
– Implement TDMA
– HW congestion control – HPCC, NDP

TX Operation

Driver

Scheduler Desc. fetch Data fetch TX

Desc.

Desc.

Desc.

Packet

Packet

PacketQueue active

Reschedule

TX on wire

DMA read DMA read

Read cpl. Read cpl.

TX completion

DMA write

Queue info,
packet size

Queue info

Ports and Interfaces

• Hardware support for
multiple uplinks

• Multiple physical ports
appear as single OS-level
interface

• Ports have separate
schedulers

• Migrate or stripe flows across
ports by changing scheduler
settings

Host

Data
Driver IF Port

Driver IF Port

NIC

Host

Data Driver IF
Port

Port

NIC

Traditional NIC: assignment in software

Corundum NIC: assignment in hardware

Host interface

• NIC transfers packet data via direct memory access (DMA)
over PCI express

• Custom DMA engine to perform transfers over PCIe
– Existing cores (i.e. XDMA) could not be easily controlled or simulated
– DMA engine integral to performance of NIC

• PCIe simulation framework in Python/MyHDL for testing NIC
– Event-driven, transaction-layer simulation
– Includes root complex, switches, FPGA PCIe interface core models, etc.
– Supports MMIO, DMA, P2P DMA, BARs, configuration space, etc.

Performance evaluation

• Installed 100G Corundum NIC in Dell R540 server
– Alpha Data ADM-PCIE-9V3
– Dual socket Intel Xeon Gold 6138 (20 cores)

• Direct connection to Mellanox ConnectX-5 NIC
• Loaded link with multiple instances of iperf3
• Tested MTU 1500 B and 9000 B
• Compared against pair of Mellanox ConnectX-5 NICs

– Data is somewhat old.

Performance: 9 KB MTU

Intel host, 9KB MTU, separate Intel host, 9KB MTU, simultaneous

Performance: 1.5 KB MTU

Intel host, 1.5KB MTU, separate Intel host, 1.5KB MTU, simultaneous

Corundum Ecosystem

• Github repository – public since SIGCOMM 2019 (August)
• Google group
• Hit front page of Hacker News in January (~10k views on GH)
• Published in FCCM 2020
• Interest from many groups including Microsoft Research,

NetFPGA team in Cambridge, IBM research, UIC, UW-
Madison, University of Fribourg, NUDT

• Working with Xilinx Research Labs to include Corundum in
OpenNIC/NetFPGA 2020

Corundum Development Roadmap
• Driver development

– Improve kernel driver performance
– Investigate supporting DPDK/MPI/libfabric

• Gateware improvements
– Variable length descriptors, metadata, SR-IOV, etc.
– Firmware updates, transceiver access, etc.

• A suite of hardware shims for Corundum that can enable
innovative networking applications

• End goal: Open “full-stack” optical-networking ecosystem
– Corundum + DPDK driver + userspace network stack

Applications

• Datapath for novel transmit schedulers
• Instrument Corundum for performance measurements
• Direct transceiver access permits physical-layer

measurements and development of new wireline protocols
• Corundum can be used in isolation as a NIC, or as part of a

larger system as a packet DMA engine
• Discuss two applications:

– TDMA for microsecond circuit switching
– PHY layer BER measurement for link characterization

Corundum for optical networking

• Features specific for circuit switching:
– Microsecond precision time synchronziation
– Microsecond precision TDMA
– Numerous hardware queues for per-destination control
– PHY layer link characterization
– PHY layer access for custom line protocols
– Reconfigurable hardware for implementing custom routing protocols

Rotor switch prototype

Grating
pinwheel

Optical layout:

Input

Topology 2

Topology 1

Diffracted
beamLaser-written

grating pinwheel

95
mm

Input
beam

Crosstalk: < 30 dB
Operating spectrum: > 120 nm
2-pass insertion loss: 5 – 8 dB*

(*7 improved with better grating)

Fibers for
Network
topologiesHard drive spindle

Corundum in use: Testing a new Rotor switch prototype

9 Servers

Rotor
Switch

Connections (back)

Measured BER “heat map”

20

Switching time ~ 22 µs

System-level switching time includes:
• Physical switching time (~22 us)
• AGC and CDR lock time (~10 us)
• Disk synchronization (~10 us)

Does not include:
• Ethernet 64b/66b frame sync
• NIC transmit timing accuracy

Se
ct

or
 N

um
be

r

Log BER

Sector Offset (µs)

Total 54
sectors

Each heat map shows BER vs time for
one input connection, through 54
sectors (3 configurations repeated 18
times) of one full disk rotation.

Switch system-level testing using Corundum

Full stack optically-switched unmodified Linux app (iperf)

21

Every third sector
has low errors -
sufficient to run app.

• Structure in BER showed some paths through the rotor switch
are usable (with few errors from pinwheel fab errors /power
offset)

• Ran app “iperf” on a “clean” single path
– Network measurement application
– Unmodified TCP for network stack

Zoom
in

Optical networks built on top of Corundum

• We are building additional logic – called shims – on top of the
baseline design to support new networking research

• Shims are logic that sits between the core Corundum
datapath and the Ethernet MACs

• Corundum can be used by other groups as a foundation for
other networking research by building different shims

Example shim: Opera protocol

• Opera protocol (NSDI 2020) is designed to support low-latency
traffic over RotorNet

• Separate port/interface to handle low-latency traffic
• Encapsulate opera traffic

– can add extra metadata in header if needed

• Hop-by-hop routing determined by PTP time
• Merge incoming indirect traffic with new indirect traffic
• Current effort is at server level – can be adapted to ToR as in

paper

Example shim: Opera protocol

Corundum

IF (“eth0”)

Port

PTP clock

Opera shim

Mux

Demux
MAC SW

Port
Encap

Decap

Mux

Route Demux

FIFO

Research Directions: Line protocol development

• Ethernet line protocols are not designed for circuit switching
– Slow frame sync (~10 us)
– Slow lane bonding/alignment marker lock (~200 us for 100G CAUI-4)
– Slow FEC block lock (~ms for 100G CAUI-4 RS-FEC)

• New line protocols required for efficient circuit switching
– Burst-mode receivers, fast frame sync
– Switch-aware lane bonding and FEC techniques

• Corundum provides a platform for evaluating line protocols in
a datacenter environment

