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Motivation for FPGA-based NIC

• Precise control of packet transmission from servers has many 
applications
– Rate limiting, flow control, congestion control, TDMA, circuit switching, etc.

• Deterministic sub-microsecond control not feasible in software
• Little hardware support in commercial NICs

– Limited number of queues, limited control over transmit scheduling
– Commercial SmartNICs designed for packet processing, not flow control

• Possible to do on an FPGA
– But there are no extensible high-performance FPGA-based NIC reference 

designs to use as a foundation



Corundum NIC

• Corundum is a reference open-source FPGA-based NIC supporting many FPGA platforms 
• Provides a network interface similar in performance to a commercially-available NIC
• Enables the implementation of additional hardware features needed for circuit switching 

and “in-network” computing.
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NIC Datapath
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Queue Handling
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Scalable Queue Management

• Each queue is an independent channel between SW and HW
• Traditional NICs support ~100 queues for load-balancing

– Each CPU core or virtual machine gets 1 queue

• Queue management logic stores queue state in block RAM
– 128 bits/queue
– Scalable to 10,000+ queues
– Permits fine-grained, per-flow or per-destination control



Transmit scheduler

• Determines which queues to transmit from
• Default scheduler is round-robin

– Cycles through all active queues, sending one packet at a time

• Possible to extend or replace scheduler
– Implement rate limiting, WFQ, etc.
– Ex: SENIC, Carousel, PIEO, Loom

• Possible to enable/disable queues based on events or PTP 
time
– Implement TDMA
– HW congestion control – HPCC, NDP



TX Operation
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Ports and Interfaces

• Hardware support for 
multiple uplinks

• Multiple physical ports 
appear as single OS-level 
interface

• Ports have separate 
schedulers

• Migrate or stripe flows across 
ports by changing scheduler 
settings
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Host interface

• NIC transfers packet data via direct memory access (DMA) 
over PCI express

• Custom DMA engine to perform transfers over PCIe
– Existing cores (i.e. XDMA) could not be easily controlled or simulated
– DMA engine integral to performance of NIC

• PCIe simulation framework in Python/MyHDL for testing NIC
– Event-driven, transaction-layer simulation
– Includes root complex, switches, FPGA PCIe interface core models, etc.
– Supports MMIO, DMA, P2P DMA, BARs, configuration space, etc.



Performance evaluation

• Installed 100G Corundum NIC in Dell R540 server
– Alpha Data ADM-PCIE-9V3
– Dual socket Intel Xeon Gold 6138 (20 cores)

• Direct connection to Mellanox ConnectX-5 NIC
• Loaded link with multiple instances of iperf3
• Tested MTU 1500 B and 9000 B
• Compared against pair of Mellanox ConnectX-5 NICs

– Data is somewhat old. 



Performance: 9 KB MTU

Intel host, 9KB MTU, separate Intel host, 9KB MTU, simultaneous



Performance: 1.5 KB MTU

Intel host, 1.5KB MTU, separate Intel host, 1.5KB MTU, simultaneous



Corundum Ecosystem

• Github repository – public since SIGCOMM 2019 (August)
• Google group
• Hit front page of Hacker News in January (~10k views on GH)
• Published in FCCM 2020
• Interest from many groups including Microsoft Research, 

NetFPGA team in Cambridge, IBM research, UIC, UW-
Madison, University of Fribourg, NUDT

• Working with Xilinx Research Labs to include Corundum in 
OpenNIC/NetFPGA 2020



Corundum Development Roadmap
• Driver development

– Improve kernel driver performance
– Investigate supporting DPDK/MPI/libfabric

• Gateware improvements
– Variable length descriptors, metadata, SR-IOV, etc.
– Firmware updates, transceiver access, etc.

• A suite of hardware shims for Corundum that can enable 
innovative networking applications

• End goal: Open “full-stack” optical-networking ecosystem
– Corundum + DPDK driver + userspace network stack



Applications

• Datapath for novel transmit schedulers
• Instrument Corundum for performance measurements
• Direct transceiver access permits physical-layer 

measurements and development of new wireline protocols
• Corundum can be used in isolation as a NIC, or as part of a 

larger system as a packet DMA engine
• Discuss two applications:

– TDMA for microsecond circuit switching
– PHY layer BER measurement for link characterization



Corundum for optical networking

• Features specific for circuit switching:
– Microsecond precision time synchronziation
– Microsecond precision TDMA
– Numerous hardware queues for per-destination control
– PHY layer link characterization
– PHY layer access for custom line protocols
– Reconfigurable hardware for implementing custom routing protocols



Rotor switch prototype
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Corundum in use: Testing a new Rotor switch prototype
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Measured BER  “heat map”
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Switching time ~ 22 µs

System-level switching time includes:
• Physical switching time (~22 us)
• AGC and CDR lock time (~10 us)
• Disk synchronization (~10 us)

Does not include:
• Ethernet 64b/66b frame sync
• NIC transmit timing accuracy
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Each heat map shows BER vs time for 
one input connection, through 54 
sectors (3 configurations repeated 18 
times) of one full disk rotation.

Switch system-level testing using Corundum



Full stack optically-switched unmodified Linux app (iperf)
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Every third sector 
has low errors  -
sufficient to run app. 

• Structure in BER showed some paths through the rotor switch 
are usable (with few errors from pinwheel fab errors /power 
offset)

• Ran app “iperf” on a “clean” single path
– Network measurement application
– Unmodified TCP for network stack

Zoom
in



Optical networks built on top of Corundum

• We are building additional logic – called shims – on top of the 
baseline design to support new networking research

• Shims are logic that sits between the core Corundum 
datapath and the Ethernet MACs

• Corundum can be used by other groups as a foundation for 
other networking research by building different shims



Example shim: Opera protocol

• Opera protocol (NSDI 2020) is designed to support low-latency 
traffic over RotorNet

• Separate port/interface to handle low-latency traffic
• Encapsulate opera traffic

– can add extra metadata in header if needed

• Hop-by-hop routing determined by PTP time
• Merge incoming indirect traffic with new indirect traffic
• Current effort is at server level – can be adapted to ToR as in 

paper



Example shim: Opera protocol
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Research Directions: Line protocol development

• Ethernet line protocols are not designed for circuit switching
– Slow frame sync (~10 us)
– Slow lane bonding/alignment marker lock (~200 us for 100G CAUI-4)
– Slow FEC block lock (~ms for 100G CAUI-4 RS-FEC)

• New line protocols required for efficient circuit switching
– Burst-mode receivers, fast frame sync
– Switch-aware lane bonding and FEC techniques

• Corundum provides a platform for evaluating line protocols in 
a datacenter environment


