

ENLITENED Annual Program Review

LEED – A Lightwave Energy Efficient Data Center

October 23, 2018

. . . .

Data Center Network Objectives

- What you want in any data center network
 - Non-blocking, all-to-all connectivity, full line rate
- Problem for existing data centers
 - Too expensive and power hungry
- LEED Solution
 - Complete data center network redesign
 - Co-optimize network, optical switch, and interconnect
- Result
 - Larger (cost-comparable) bandwidth leading to commensurate server energy-utilization improvement (ENLITENED Metric 1.1)

- Dramatically simplified circuit-switched control plane
 - Deterministic no schedule
 - Practical and scalable

Top-Level LEED Objectives

- A robust, scalable, energy-efficient data center (ENLITENED Metric 1.1)
- Co-optimized across:
 - Network Architecture
 - Parallel optically-switched network
 - Cost effective and fault tolerant
 - Optical Switch
 - Decouples switching from routing
 - Based on "pinwheel" switch
 - Commercially viable enhanced link-margin interconnects
 - Burst-mode APD receiver
 - WDM modulator array
 - Broadband mux/demux

LEED Team

C			0	•	0	•		0	
Systems									
 Max Mellette, George Papen 									
George Porter Alex Snoeren (UCSD)									
Optical Switch									
lly Aguraly Jacob Ford May Mallatta (UCCD)									
– Ilya Agurok, Joseph Ford, Max Mellette (UCSD)									
Interconnects									
-UCSD									
Shaya Fainman, Shayan Moookherjea									

- Axalume Ashok Krishnamoorthy, Saman Saeedi
- Sandia National Labs
 Michael Gehl, Christopher T. DeRose, Paul S. Davids, Douglas
 C. Trotter, Andrew L. Starbuck Christina M. Dallo, Dana Hood, Andrew Pomerene and Tony Lentine

Project-Wide Objectives

- Simulation (Network \rightarrow Metric 1.1; Interconnect \rightarrow Metric 1.2/1.3)
- Emulation (Rotornet switch using programmable packet switch)
- Validation (Hardware testbed/emulation \rightarrow all metrics)

Anticipated Outcomes

Improved server energy efficiency with cost-comparable network

- Directly addresses
 ENLITENED Metric 1.1
- Highly scalable
 - Deterministic switching & routing
- Cost effective
 - No OEO in core
 - Low cost per switched bit
- Robust
 - Parallel Network Architecture

Measured Outcomes Leverage San Diego Supercomputer Center Comet cluster

- 1,944 nodes
- 24 cores / node @ 2.5 GHz
- InfiniBand Network 40 Gb/s / node
- Full bisection "pods" of 72 servers
- 4:1 oversubscription between pods

Energy Efficiency

- LEED members set standard for energy-efficient computing
 - Relied on JouleSort measurement methodology
 - World-record set in records sorted/Joule
- Developing best practices for measuring ENLITENED Metric 1.1
 - Direct measure power of entire system (servers + network)
 - Extrapolate to large-scale clusters
 - Must deal w/power variability

Sandia National Laboratories

lst Year Validation Framework Using Comet Accomplishments

Emulation of Rotor Switch

1st Year Accomplishments

Sandia Nationa

Barefoot Tofino 6.4 Tb/s programmable P4 switch

- 8 hardware ToR packet switches
 - LEED network protocol supported via added P4 rules

Axalume NETWORKS

- 4 hardware emulated LEED switches
 - μs circuit switch implemented via P4 rule set
- Accurate emulation of rotor switch essential for scaled-out experimental measurements of energy efficiency (Metric 1.1)

Project Objectives

Switch Objectives - Background

- Initial Goal: More ports & faster OXC w/lower cost & same loss
 - Focus on free-space optics (FSO) solutions
- First Innovation Selector Switch
 - Decouple Switching (# configurations) from Routing (I/O pairs for each configuration)
- Selector Switch
 - Image-domain FSO parallel gang switching
 - Small set of pre-programmed I/O matchings

- LEED Objectives for Selector Switch
 - 1) Upgrade from 7dB to <3.5 dB/pass loss & 150µs to <50 µs; insert in testbed
 - 2) Explore & "de-risk" technology path to practical/commercial high-port-count switches

alume NETWORKS

Sandia National Laboratories

10

Choice of Switch Actuator

Initial proposal: transition from single MEMS to faster MEMS device array

Project Objectives

Sandia National Laboratories

Discrete MEMS: fast asynchronous switching in large arrays, but...

- Needs huge NRE \rightarrow risk to future commercialization

• Second innovation: a rotating faceted beam-deflector actuator

Rotor net supports synchronous & sequential switching

Axalume NETWORKS

"Pinwheel" Rotor Switch Actuator Accomplishments

Ist Year

Sandia Nationa ahoratories

alume NETWORKS

Prototype Rotor Switch Status

1st Year Accomplishments

Fiber reduced pitch I/O arrays, **Optomechanics & alignment fixture**

Custom optics cut and coated, currently being assembled

Custom grating printed on HD disk & gold coated for testing

Grating spindle and control board

- All custom components completed or in final fab.
 - Switch alignment process has been developed.
- Spindle control electronics has been tested
 - working on multi-spindle synchronization
- Switch integration will begin this month.

Interconnect/Switch Objectives

I. Optically-interconnected, electrical switching Switch energy is relatively high TxRx TxRx TxRx TxRx Electronic Link metrics Switch ~ 10 pJ/bit 2 pJ/bit 12.8 Tb/s IO BW density **T**x**R**x TxRx **T**x**R**x TxRx 1 Tb/s/cm (a) Switch energy is low II. Optically switched Switch loss is managed w/o amplifiers Link is optimized for margin Link metrics(1.2) TxRx TxRx 1 pJ/bit excluding laser power Optical +1 pJ/bit laser x excess switch loss Switch = 2 pJ/bit for a lossless switch **T**x**R**x TxRx Link metric vs ~14 pJ/bit Case I (b) Scales > 100 Tb/sSandia National aboratories

15

Year

st Avalanche Photodiode Rx: Design Accomplishments

Metal

Oxide

inFocus

- Uses germanium absorption with silicon multiplication regions
 - Two classes of designs with vertical and lateral multiplication regions
 - Fully compatible with existing Sandia silicon photonics process
 - Simulations performed using Silvaco to optimize dopant and dimension splits
 - One lateral design designed for integration with burst mode Rx.
 - p-i-n versions as well

Sandia Nationa

aboratories

Avalanche Photodiode Rx: Fab

1st Year Accomplishments

- All LEED silicon photonics fabrication lots completed before fab-conversion deadline
- DC wafer testing showed avalanche behavior as expected

Detailed optical testing to begin shortly

Sandia National Laboratories

Burst-Mode Optical Receivers

Burst-mode receivers are required for optical switching

The key to achieve this is to reduce the optical receiver's acquisition time.

Conventional receivers cannot achieve this

- TIA front-ends are used to reduce the input impedance and extend the bandwidth
- TIA's are generally sensitive to input bias. This necessitates slow feedback
- The feedback loop introduces stability criteria that limits acquisition speed
- Compatibility with flip-chip & wire-bond configuration further complicates the design
- Axalume's BM Rx circuit uniquely achieves fast clock-recovery, high-speed, low-area, and low power in a "workhorse" CMOS technology node
- Tapeout completed Year 1 milestone

Burst-Mode Optical Rx Specification Accomplishments

- Program technical requirements:
 - Total acquisition time of less than 100ns
 - Optical power dynamic range
 - Dynamic range spec suitable for optical switching: 7dB
 - < 25ns for DC acquisition</p>
 - Burst-mode clock recovery
 - No phase information, 100ppm frequency offset
 - < 75ns for full clock recovery time</p>
- Pre-amble prior to payload with sequence of 0s and 1s.

Top-level Layout

1st Year Accomplishments

FC Pads 25um x 25um with 15um opening @ 50um pitch

Sandia National

Laboratories

19

INFOCUS NETWORKS

Resonant Modulators: Fab

Ist Year Accomplishments

- Sandia-fabricated LEED silicon photonics fabrication lots received for measurement.
- Optical passive testing showed expected baseline behavior on selected test sites (FWHM ~ 22GHz).
- Detailed optical testing to begin shortly, C-band & Oband
- Design and fab iterations underway.
- Parallel effort on bias control and tune-up controller.

National

Laboratories

20

Broadband MUX/DEMUX

Broadband Wavelength Selective Coupler

- Reduce power consumption by reducing loss while maintaining other favorable attributes
 - High extinction ratio, broad bandwidth, small footprint, fabrication tolerant, and low crosstalk

Measured Performance

- Footprint per channel: <1000 µm²
- Scalable to 40 channels with footprint 1 mm²
- Channel width: 250 GHz
- Channel-to-channel crosstalk: < 15dB
- Loss on drop port: 2 dB

National aboratories st Year

Accomplishments

lechnology-to-

LEED has Fostered two Start-ups

- Axalume incorporated March 01, 2017
 - Incubating at Evonexus
 - Multiple patents filed
 - Rx chipset taped out August 2018
- inFocus Networks incorporated March 26, 2018
 - Focus on commercialization of switch and architecture/protocol

Axalume NETWORKS

Core IP filed (three patents)

Sandia

LEED Outreach

Invited Talks and Plenaries

- W. M. Mellette, J. E. Ford, and G. Porter, "Partially Configurable Optical Switching for Data Center Networks," IEEE Photonics Conference, 2017
- A. V. Krishnamoorthy, International Solid State Circuits Conference (ISSCC) 2018, Paper 16.1, San Francisco, Feb 2018
- A. V. Krishnamoorthy, Co-packaged optical interconnects for computing & switching systems Optical Fiber Communications Workshop on Optical Co-packaging, OFC 2018
- A. V. Krishnamoorthy Low-Power Co-Integrated Electronics-Photonics for Switching and Computing Systems OSA Topical Meeting on Photonics in Computing and Switching, Limassol, Cyprus, September2018 (Plenary)
- W. M. Mellette, A. C. Snoeren, and G. Porter, "Toward Optical Switching in the Data Center," IEEE International Conference on High Performance Switching and Routing 2018.

Accepted Invited Talks

- W. M. Mellette, "A Practical Approach to Optical Switching in Data Centers," OFC 2019.
- G. Papen, Workshop on "Opportunities and Challenges for Optical Switching in the Data Center", OFC 2019.

Collaborations with Industry

Y. Birk, W. M. Mellette, and E. Zahavi, "Switch Radix Reduction and Support for Concurrent Bidirectional Traffic in RotorNets," Photonics and Switching Conference, 2018.

Supplemental Support

Technology-to-Market

California Energy Commission

- Additional \$196k in direct support from initial budget
- Supporting additional wafer runs, switch prototyping, and TT&O

San Diego Supercomputer Center

- NSF funded site has discretionary compute cycles
- PI has given LEED compute cycles
- Infrastructure support for power measurements on Comet

Iume NETWORKS

Surprises and Lessons Learned

Surprises

- Combination of pinwheel/conformal gratings provides a large design space for optical switch design
 - Original motivation practical commercialization path

Lessons Learned and Future Challenges

- Power/energy measurements require careful calibration
 - Our focus is on an accurate, scalable energy measurement
- The control plane is hard even without a schedule
 - Must make packets and circuits "play nice" together

