## ENLITENED Annual Program Review

LEED - A Lightwave Energy Efficient Data Center

October 23, 2018

## Data Center Network Objectives

－What you want in any data center network
－Non－blocking，all－to－all connectivity，full line rate
－Problem for existing data centers
－Too expensive and power hungry
－LEED Solution
－Complete data center network redesign
－Co－optimize network，optical switch，and interconnect
－Result
－Larger（cost－comparable）bandwidth leading to commensurate server energy－utilization improvement（ENLITENED Metric 1．1）
－Dramatically simplified circuit－switched control plane
－Deterministic－no schedule
－Practical and scalable
inFocus
NETWORKS
Sandia

## Top-Level LEED Objectives

- A robust, scalable, energy-efficient data center (ENLITENED Metric 1.1)
- Co-optimized across:
- Network Architecture
- Parallel optically-switched network
- Cost effective and fault tolerant
- Optical Switch
- Decouples switching from routing
- Based on "pinwheel" switch
- Commercially viable enhanced link-margin interconnects
- Burst-mode APD receiver
- WDM modulator array
- Broadband mux/demux

APD for burst-mode Rx

Parallel Optical Rotor Network
"Pinwheel" Rotor Switch



NETWORKS
Sandia
National
Laboratories UCSD

## LEED Team

- Systems
- Max Mellette, George Papen George Porter, Alex Snoeren (UCSD)
- Optical Switch
- Ilya Agurok, Joseph Ford, Max Mellette (UCSD)
- Interconnects
- UCSD

Shaya Fainman, Shayan Moookherjea

- Axalume

Ashok Krishnamoorthy, Saman Saeedi

- Sandia National Labs Michael Gehl, Christopher T. DeRose, Paul S. Davids, Douglas C. Trotter, Andrew L. Starbuck Christina M. Dallo, Dana Hood, Andrew Pomerene and Tony Lentine

Sandia
National
Laboratories UCSD

## Project-Wide Objectives



- Simulation (Network $\rightarrow$ Metric 1.1; Interconnect $\rightarrow$ Metric 1.2/1.3)
- Emulation (Rotornet switch using programmable packet switch)
- Validation (Hardware testbed/emulation $\rightarrow$ all metrics)

Sandia
National
Laboratories UCSD

## Anticipated Outcomes

- Improved server energy efficiency with cost-comparable network
- Directly addresses ENLITENED Metric 1.1
- Highly scalable
- Deterministic switching \& routing
- Cost effective
- No OEO in core
- Low cost per switched bit
- Robust
- Parallel Network Architecture


Measured Outcomes Leverage San Diego Supercomputer Center Comet cluster

- 1,944 nodes
- 24 cores / node @ 2.5 GHz
- InfiniBand Network $40 \mathrm{~Gb} / \mathrm{s} /$ node
- Full bisection "pods" of 72 servers
- 4:1 oversubscription between pods

Sandia

## Energy Efficiency

- LEED members set standard for energy-efficient computing
- Relied on JouleSort measurement methodology
- World-record set in records sorted/Joule
- Developing best practices for measuring ENLITENED Metric 1.1
- Direct measure power of entire system (servers + network)
- Extrapolate to large-scale clusters
- Must deal w/power variability

inFocus
NETWORKS
Sandia
National
$\stackrel{7}{7}$ Laboratories UCSD


## Validation Framework Using Comet

1. Impose bandwidth restrictions:


2. Measure energy efficiency:

- 3. Application execution dependency graph
- Feeds into blocked-time network model
- Use accurate power meter energy measurements to calibrate energy model (supports LEED achieving Metric 1.1)
- Requires emulation of optical switch

$1: 1$ Fat Tree

3:1 Fat
Tree
inFocus
NETWORKS
Sandia
National
Laboratories UCSD

## Emulation of Rotor Switch



- Barefoot Tofino 6.4 Tb/s programmable P4 switch
- 8 hardware ToR packet switches
- LEED network protocol supported via added P4 rules
- 4 hardware emulated LEED switches
- $\mu$ s circuit switch implemented via P4 rule set
- Accurate emulation of rotor switch essential for scaled-out experimental measurements of energy efficiency (Metric 1.1)
inFocus
NETWORKS
Sandia


## Switch Objectives - Background

- Initial Goal: More ports \& faster OXC w/lower cost \& same loss
- Focus on free-space optics (FSO) solutions
- First Innovation - Selector Switch
- Decouple Switching (\# configurations) from Routing (I/O pairs for each configuration)

- LEED Objectives for Selector Switch

1) Upgrade from 7 dB to $<3.5 \mathrm{~dB} /$ pass loss \& $150 \mu \mathrm{~s}$ to $<50 \mu \mathrm{~s}$; insert in testbed
2) Explore \& "de-risk" technology path to practical/commercial high-port-count switches

Axalume
inFocus
NETWORKS
Sandia
National


Laboratories UCSD

## Choice of Switch Actuator

Initial proposal: transition from single MEMS to faster MEMS device array

## Existing 61-port prototype



Original LEED upgrade



## Scale-up to commercial product



4096
120 $\mu \mathrm{m}$ Bell Labs 2007
mirrors research paper
$\pm 4^{\circ}, \quad$ (not product)
$20 \mu \mathrm{sec}$

- Discrete MEMS: fast asynchronous switching in large arrays, but...
- Needs huge NRE $\rightarrow$ risk to future commercialization
- Second innovation: a rotating faceted beam-deflector actuator
- Rotor net supports synchronous \& sequential switching

CHANGING WHAT'S POSSIBL

inFocus
NETWORKS
Sandia
National

## 



Sandia
National


Laboratories UCSD


Fiber reduced pitch I/O arrays, Optomechanics \& alignment fixture


Custom optics cut and coated, currently being assembled


Custom grating printed on HD disk \& gold coated for testing

Grating spindle and control board

- All custom components completed or in final fab.
- Switch alignment process has been developed.
- Spindle control electronics has been tested
- working on multi-spindle synchronization
- Switch integration will begin this month.

inFocus
NETWORKS
Sandia National


Laboratories UCSD

## Interconnect/Switch Objectives

- I. Optically-interconnected, electrical switching

- Switch energy is relatively high
- Link metrics
- $2 \mathrm{pJ} / \mathrm{bit}$
- BW density
- $1 \mathrm{~Tb} / \mathrm{s} / \mathrm{cm}$
- II. Optically switched

- Switch energy is low
- Switch loss is managed w/o amplifiers
- Link is optimized for margin
- Link metrics(1.2)

1 pJ/bit excluding laser power
$+1 \mathrm{pJ} / \mathrm{bit}$ laser x excess switch loss
= $2 \mathrm{pJ} / \mathrm{bit}$ for a lossless switch

- Link metric vs $\sim 14$ pJ/bit Case I
- Scales > $100 \mathrm{~Tb} / \mathrm{s}$

Axalume
inFocus
NETWORKS
Sandia
National
Laboratories UCSD

## Avalanche Photodiode Rx: Design

Uses germanium absorption with silicon multiplication regions

- Two classes of designs with vertical and lateral multiplication regions
- Fully compatible with existing Sandia silicon photonics process
- Simulations performed using Silvaco to optimize dopant and dimension splits
- One lateral design designed for integration with burst mode Rx.
- p-i-n versions as well


Cxalume
inFocus
NETWORKS
Sandia
National

## Avalanche Photodiode Rx：Fab

－All LEED silicon photonics fabrication lots completed before fab－conversion deadline
－DC wafer testing showed avalanche behavior as expected

－Detailed optical testing to begin shortly

inFocus
NETWORKS

CHANGING WHAT＇S POSSIBLE

## Burst-Mode Optical Receivers

## Burst-mode receivers are required for optical switching

- The key to achieve this is to reduce the optical receiver's acquisition time


## Conventional receivers cannot achieve this

- TIA front-ends are used to reduce the input impedance and extend the bandwidth
- TIA's are generally sensitive to input bias. This necessitates slow feedback
- The feedback loop introduces stability criteria that
 limits acquisition speed
- Compatibility with flip-chip \& wire-bond configuration further complicates the design
- Axalume's BM Rx circuit uniquely achieves fast clock-recovery, high-speed, low-area, and low power in a "workhorse" CMOS technology node

- Tapeout completed Year 1 milestone

Sandia
National


Laboratories UCSD

## 

- Program technical requirements:
- Total acquisition time of less than 100ns
- Optical power dynamic range
- Dynamic range spec suitable for optical switching: 7dB
$-<25 n s$ for DC acquisition
- Burst-mode clock recovery
- No phase information, 100ppm frequency offset
$-<75 n$ for full clock recovery time
- Pre-amble prior to payload with sequence of 0s and 1 s .



## Top-level Layout



- CMOS BM_Rx matches Sandia's detector \&

APD array SiP chip

- Flip-chip co-integration expected to provide significant sensitivity and power benefit


CMOS Top-level Metal Compatible with both Flip-chip and Wire-bond

WB Pad
Dummy FC Pads


WB Pads 60um x 80um @ 100um pitch
FC Pads 25um x 25um with 15um opening @ 50um pitch

CHANGING WHAT'S POSSIBLE
inFocus
NETWORKS
Sandia National


Laboratories UCSD

## Resonant Modulators: Fab

- Sandia-fabricated LEED silicon photonics fabrication lots received for measurement.
- Optical passive testing showed expected baseline behavior on selected test sites (FWHM ~22GHz).
- Detailed optical testing to begin shortly, C-band \& Oband.
- Design and fab iterations underway.
- Parallel effort on bias control and tune-up controller.


CHANGING WHAT'S POSSIBLE

Sandia
National
20
Laboratories UCSD

## Broadband MUX/DEMUX



- Broadband Wavelength Selective Coupler
- Reduce power consumption by reducing loss while maintaining other favorable attributes
- High extinction ratio, broad bandwidth, small footprint, fabrication tolerant, and low crosstalk
- Measured Performance
- Footprint per channel: <1000 $\mu^{2}$
- Scalable to 40 channels with footprint $1 \mathrm{~mm}^{2}$
- Channel width: 250 GHz
- Channel-to-channel crosstalk: < 15dB
- Loss on drop port: 2 dB


CAxalume
inFocus
NETWORKS
Sandia


21
National
21
Laboratories UCSD

## LEED has Fostered two Start-ups

- Axalume - incorporated March 01, 2017
- Incubating at Evonexus
- Multiple patents filed

- Rx chipset taped out August 2018
- inFocus Networks - incorporated March 26, 2018
- Focus on commercialization of switch and architecture/protocol
- Core IP filed (three patents)
inFocus NETWORKS
- Applied for SBIR Phase I funding
inFocus
NETWORKS



## LEED Outreach

## Invited Talks and Plenaries

- W. M. Mellette, J. E. Ford, and G. Porter, "Partially Configurable Optical Switching for Data Center Networks," IEEE Photonics Conference, 2017
- A. V. Krishnamoorthy, International Solid State Circuits Conference (ISSCC) 2018, Paper 16.1, San Francisco, Feb 2018
- A. V. Krishnamoorthy, Co-packaged optical interconnects for computing \& switching systems Optical Fiber Communications Workshop on Optical Co-packaging, OFC 2018
- A. V. Krishnamoorthy Low-Power Co-Integrated Electronics-Photonics for Switching and Computing Systems OSA Topical Meeting on Photonics in Computing and Switching, Limassol, Cyprus, September2018 (Plenary)
- W. M. Mellette, A. C. Snoeren, and G. Porter, "Toward Optical Switching in the Data Center," IEEE International Conference on High Performance Switching and Routing 2018.


## Accepted Invited Talks

- W. M. Mellette, "A Practical Approach to Optical Switching in Data Centers," OFC 2019.
- G. Papen, Workshop on "Opportunities and Challenges for Optical Switching in the Data Center", OFC 2019.


## Collaborations with Industry

- Y. Birk, W. M. Mellette, and E. Zahavi, "Switch Radix Reduction and Support for Concurrent Bidirectional Traffic in RotorNets," Photonics and Switching Conference, 2018.


## Supplemental Support

- California Energy Commission
- Additional \$196k in direct support from initial budget
- Supporting additional wafer runs, switch prototyping, and TT\&O
- San Diego Supercomputer Center
- NSF funded site has discretionary compute cycles
- PI has given LEED compute cycles
- Infrastructure support for power measurements on Comet

Axalume
inFocus
NETWORKS
Sandia

## Surprises and Lessons Learned

- Surprises
- Combination of pinwheel/conformal gratings provides a large design space for optical switch design
- Original motivation — practical commercialization path
- Lessons Learned and Future Challenges
- Power/energy measurements require careful calibration
- Our focus is on an accurate, scalable energy measurement
- The control plane is hard - even without a schedule
- Must make packets and circuits "play nice" together
inFocus
NETWORKS
Sandia

