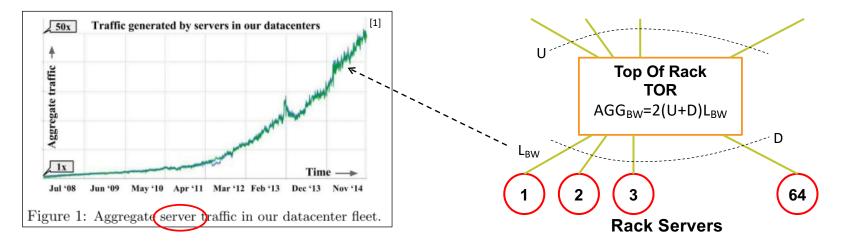


ODCNs Architectures Fundamental Limits

What we can't and can hope for OFC 2019



Why ODCNs?

- Higher Aggregate Bandwidth Needed
 - Host bandwidth demands are exponential (see Jupiter Rising [1])
 - Hence, keeping the DCN scale require exponential ToR switch aggregate bandwidth AGG_{BW} [2]

 A. Singh et al., "Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google's Datacenter Network," in SIGCOMM, 2015, pp. 183–197.
 W. M. Mellette, A. C. Snoeren, and G. Porter, "P-FatTree: A multi-channel datacenter network topology," in *Proceedings of the 15th ACM Workshop on Hot Topics in Networks*, 2016, pp. 78–84.

And the Problem is?

Silicon manufacturing technology started to saturate ("The end of Moore law")

- VLSI clock frequency stay flat since the end of the 90's
- While transistor area scaling is maintained, wire density start saturating
 - Idea area scaling is ~0.54 transistor area reduction
 - Effective wire density scaling is ~0.7
- Power density per mm² scales ~0.7

Can switches aggregate bandwidth grow exponentially?

- For fixed clock frequency 2x BW => 2x data path width (wires)
- With ideal area scaling 0.54 switches scale too
 - => 2x cells * 0.54 area => ~constant chip size, logic power x0.7
- Today true area scaling is saturating ~0.7
 - => 2x cells * 0.7 area => 1.4 chip size
 - Logic power has to grow to drive long distances
 - => power of the chip grows
- What if wire density scaling is only 0.8?

[3] ITRS2.0 2015 System Integration Vol 1

Switch Aggregated BW [3] 70000 60000 50000 40000 30000 20000 10000 0 2015 2017 2019 2021 2023 2025 2027 2029

----Total DCN BW [TB/s] ----Rack Switch Bandwidth [GB/s]

Predicted Required DCN BW vs.

³

Fundamentals

From Electrical Packet Switching to Optical Circuits

Ethernet networks are "packet switching":

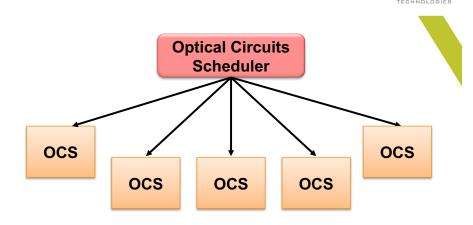
- Small message segments are sent over the network
- Packets from different messages can mix on the same wire
- When the wire is busy with a packet, others wait at the buffer

Optical network have no Buffers

- Once data enters the fabric it cannot wait for scheduling
- Packets are destroyed if they "collide"

Light must use the Green Wave

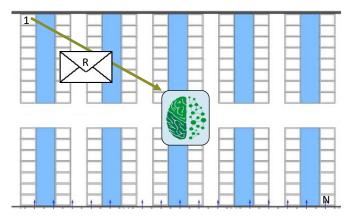
ODCNs use Circuit Switching instead of Packet Switching


Centrally Controlled ODCNs

- A Central Controller should
 - Know the required traffic matrix
 - Compute light circuits allocation
 - Online: A single permutation, or Offline: a TDMA schedule
 - To avoid **starvation** schedule offline the entire matrix
 - Send the **configuration** over to the network elements

The following system phases are required

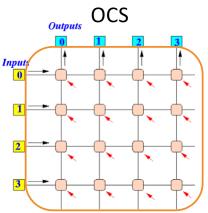
Pipelining can help but slowest phase dictate throughput == slot time

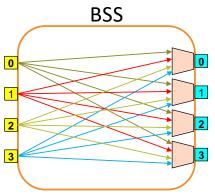

Mellanox

Central Scheduling Fundamental Limitations: Demand Collection

- We calculate the size of the traffic demand matrix = [D] = N x N
- The time it takes to collect the Traffic Matrix = T_D
- Assuming TOR as an aggregation point the matrix size is N x N
- Assuming resolution of B bytes per entry and no overhead
- Control network bandwidth of C_{BW}
- $T_D = B^* N^2 / C_{BW}$
- Example:
 - N=1000
 - D| = 1000*1000 = 1e6
 - Entry is 2 bytes
 - C_{BW} = 100Gbps = 12.5GB/s
 - T_D = |D| * 2 / 100Gbps = 2e6/12.5e9 = 160usec

Traffic Demands Collection is a Slot Time Limiter

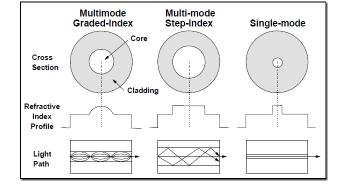


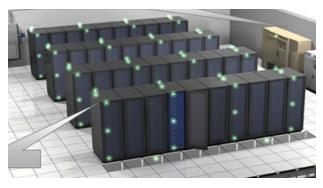


Central Scheduling Fundamental Limitations: Configuration Time

- Configuration Data Size D_C, and sending time T_C
 - The amount of data the central resource allocator/scheduler has to deliver
- Most ODCNs built using Crossbar Optical Switches (OCS) or Broadcast and Select Switches (BSS)
 - Since optical circuits cannot intersect (on same color/mode/angular momentum)
- How much data is required to configure OCS/BSS that carry F new flows?
 - Common representation is the permutation
 - Assuming K ports switch log₂(K) bits for representing ports
 - Permutation is K*log₂(K) bits
- How much time does it take to configure all switches?
 - Example: 100 L2 switches of K=1000 (like RotorNet)
 - K=1000, log₂(K) = 10
 - D_C = 1000*10*100 = 1e6 [bit]
 - T_C = D_C/ C_{BW} = 1e6 / 100Gbps = 1e6/100e9 = 10usec

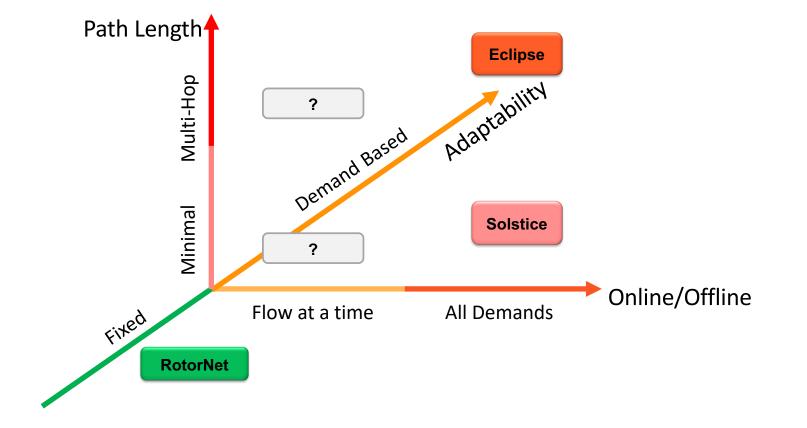
Configuration Delivery is NOT negligible





Central Scheduling Fundamental Limitations: Circuit Operation

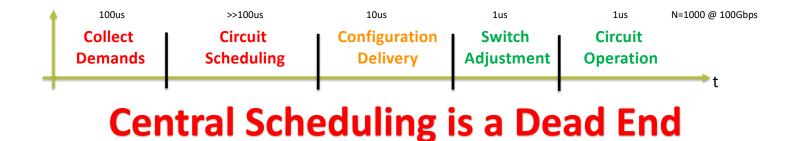
- How long does take the Light to cross the data center?
 - We denote it T_L
 - The speed of light in the refractive fiber is ~5nsec/meter
- How far apart are hosts from each other?
 - The most compact distance geometric shape: Circle
 - A realistic approximation: Square
 - Most packed Floor Plan calculation for T ToRs
 - Rack Width 60cm, Depth 100cm, Isle 100cm (on the depth side)
 - Nw*Nd=T, Nw*0.6=Nd*2.0 => $\hat{N}_d = \sqrt{\frac{3T}{10}}$
 - Example: T=1000
 - = $>\hat{N}_d = \sqrt{3*1000/_{10}} = 17 => \text{Nd} = 17$, Nw = 59
 - Max Manhattan distance between racks = 2.0*17+0.6*59=69m
 - Max latency between racks T_L =~ 0.3usec



Intrinsic Propagation Latency is < 0.5usec

Taxonomy Of Circuit Scheduling Options

Central Scheduling Fundamental Limitations: Computation Complexity


- Scheduling problem: how to allocate light paths to meet the traffic demand
- To avoid potential starvation allocate a complete "Schedule" of multiple "slots"
- Single Maximum Matching (non weighted) Hopcroft Karp
 - complexity $O(E\sqrt{V}) = O(N^{3/2})$
 - Assuming Clos where V=N/k and E = N (permutation at minimum each host send to just one other)
- Solstice: a leading single hop algorithm
 - Complexity $O(N^2 log^2(N))$
- Eclipse: utilizing available multi hop paths (optical, electrical, optical...)
 - Complexity is even higher

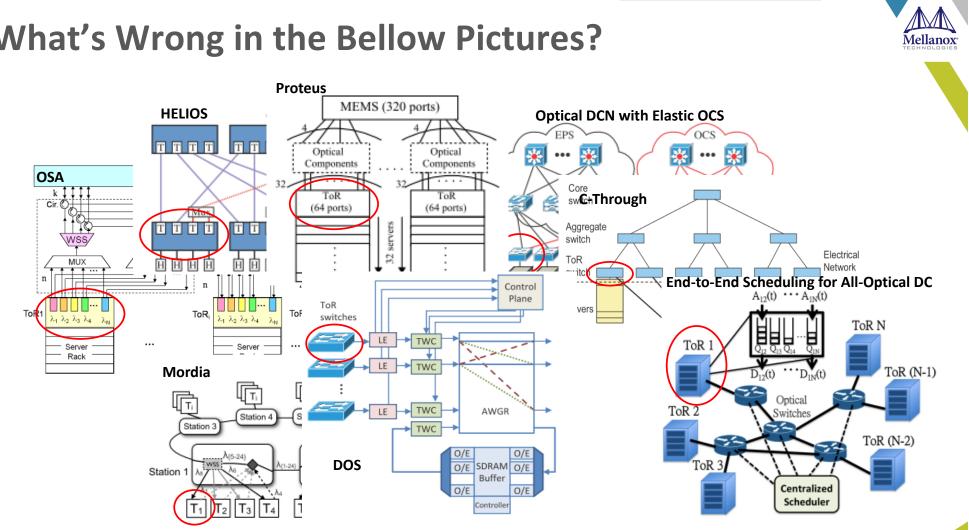
Scheduling Time is not Scalable

Central Scheduling Faith

- What can be done?
 - Fixed Schedule RotorNet
 - Support All-to-all demand, make any demand all-to-all
 - Pay in latency
 - Distributed Scheduling
 - Tradeoff the "infinite" bandwidth of Optical Fibers with less accurate scheduling
 - Lose some bandwidth, win much time
 - Avoid both requirements collection, offline scheduling and configuration fundamental limits

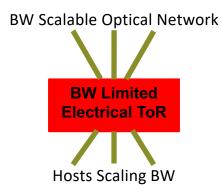
New Architectures Enable ODCN

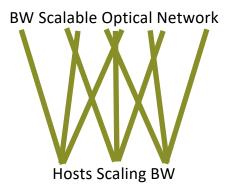
The Hybrid ToR Paradox



Motivation for ODCNs?

Saturation of Electrical Packet Switches Aggregate Bandwidth

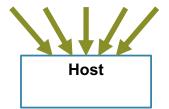

What's Wrong in the Bellow Pictures?



Avoiding the Electrical Switch BW Bottleneck

- Our motivation for ODCN is Saturation of EPS Aggregate Bandwidth
- Hence we must avoiding using Electrical ToR
- Otherwise they become our Bisectional Bandwidth Scaling bottleneck

We assume Electrical ToR have saturated BW => use Optical to the Host



Why RotorNet cannot do Optical to the Host?

- RotorNet assumes each ToR connects to all M rotors
 - With clear tradeoff between network latency and that number
- Connecting the hosts to all rotors is costly
 Most of today hosts utilize 1 or 2 ports of 4 lanes each
- Moreover, required host peak input bandwidth is M x lane bandwidth
 - Since there is no coordination between senders to same host

Lack of host input bandwidth scheduling Prevents **Optical to the Host**

=> Use Distributed Scheduling

Conclusions

Central Scheduler Architectures reach a Dead End

- New architectural innovations overcome that
 - RotorNet fixed schedule
 - Distributed Scheduling
 - However, using Electrical Switches as ToRs is contradicting to our main ODCN motivation
 - Optical Network Directly attached to the Host is avoiding the bottleneck

SOX = Server attached Optical Xpander No bandwidth bottleneck Distributed Scheduling

